Intro to crypto

PQC Spring School 2024
Kathrin Hövelmanns

March 12th, 2024

Brief history of communicating secrets

Scytale

Bodymod steganography
(Histiaeus, acc. to Herodotus)

Caesar cipher

Problem:

Techniques will never remain secret.

Brief history of communicating secrets

Brief history of communicating secrets

,Caesar with codeword':

Codeword: CRYPTO

Brief history of communicating secrets

Brief history of communicating secrets

,Caesar with codeword':			
Codeword: CRYPTO	A	A -> C	C
	T	A \rightarrow R	K
	T	$A \rightarrow Y$	R
	A	A \rightarrow P	P
	C	A \rightarrow T	V
	K	A \rightarrow O	Y

Brief history of communicating secrets

Beware hubris.

You don't find attacks on how you communicate?

Bodymod st
(Histi acc. to H

Doesn't mean no one else does!

Scytale

caesal cipitel

Did you use any cryptography today?

Amazon uses https, https invokes the TLS protocol
TLS uses cryptography
TLS is actually quite ubiquitous: shopping, banking, Netflix, gmail, Facebook (yes, I'm old), ...

Did you use any cryptography today?

Secure instant messaging:
How many apps do you use?

What do we want from cryptography?

Privacy:

Keeping secrets secret.

Integrity + authenticity:
Ensure that message really came from declared sender + arrived unaltered

Secret-key encryption

Encrypt takes plaintext and key, and produces ciphertext

Decrypt takes ciphertext and key, and produces plaintext

Goal \#1: Confidentiality despite espionage (prerequisite: adversary does not know key)

One-time pad

Key K is picked uniformly random from ℓ-bit strings: $K \leftarrow\{0,1\}^{\ell}$
Plain- and ciphertexts are also ℓ-bit strings: $m, c \in\{0,1\}^{\ell}$
Encrypt $_{K}(m)=K \oplus m$: add K and m, modulo 2 in each position $\bmod 2=$ divide by 2 , take remainder
e.g., $01 \oplus 11=(0+1 \bmod 2)(1+1 \bmod 2)=10$
$\operatorname{Decrypt}_{K}(c)=K \oplus c$
This works: $\operatorname{Decrypt}_{K}\left(\operatorname{Encrypt}_{K}(m)\right)=K \oplus \operatorname{Encrypt}_{K}(m)=K \oplus K \oplus m=m$

Perfect security

Formally: (KeyGen, Encrypt, Decrypt) perfectly secure iff
 for all plaintexts m_{1}, m_{2} and all ciphertexts c :

$$
\operatorname{Pr}\left[\text { Encrypt }_{K}\left(m_{1}\right)=c\right]=\operatorname{Pr}\left[\text { Encrypt }_{K}\left(m_{2}\right)=c\right]
$$

Probability taken over the choice of key K

Important fact (Shannon): only possible if there are as many keys as there are potential messages

One-time pad is perfectly secure

One-time pad: $\operatorname{Encrypt}_{K}(m)=K \bigoplus m, K$ chosen randomly
Suppose adversary

- gets $c=01$
- knows: m is either $m_{1}=11$ or $m_{2}=01$
- but doesn't know K

Can it tell which message m was?
No: could be $m_{1}=11$ (if $K=10$) or $m_{2}=01$ (if $K=00$)

One-time pad is perfectly secure... if used once

One-time pad: $\operatorname{Encrypt}_{K}(m)=K \oplus m, K$ chosen randomly
Suppose

- adversary sees first encryption: $c_{1}=01$
- but now also $c_{2}=c_{1}=01$
\rightarrow Adversary learns that same message was sent twice

Computational security

We want to encrypt

- arbitrary amounts of data
- with a single, short key
\rightarrow perfectly secure symmetric-key encryption infeasible in practice
Computational security ('IND-CPA') as relaxation of security goal:
Telling Encrypt $E_{K}\left(m_{1}\right)$ from Encrypt ${ }_{K}\left(m_{2}\right)$ should be
- computationally infeasible (INDistinguishability),
- even if you chose m_{1} and m_{2} yourself (Chosen Plaintext Attack).

Permutations

A permutation is a mapping $\Pi: S \rightarrow S$ from some set S to itself that is one-to-one.

In other words: Π has an inverse $\Pi^{-1}: S \rightarrow S$.

Example: $\mathrm{S}=\{A, B, C\}$

A permutation and its inverse:

x	A	B	C
$\pi(x)$	C	A	B

y	A	B	C
$\pi^{-1}(x)$	B	C	A

Not a permutation:

x	A	B	C
$\pi(x)$	C	B	B

Block ciphers are families of permutations

Block ciphers $=$ two-input functions

$$
\text { E: Keys } \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}
$$

so such each key K gives us a permutation

$$
\begin{aligned}
E_{K}:\{0,1\}^{\ell} & \rightarrow\{0,1\}^{\ell} \\
x & \mapsto E(K, x)
\end{aligned}
$$

(so for each key K, E_{K} has an inverse E_{K}^{-1})
(For practice: all functions E_{K}, E_{K}^{-1} should be efficiently computable)

Using block ciphers to encrypt

Encrypting $m=m_{1} \cdots m_{\ell}$: $c=\mathrm{E}_{\mathrm{k}}\left(m_{1}\right) \cdots \mathrm{E}_{\mathrm{k}}\left(m_{\ell}\right)$

Decrypting $c=c_{1} \cdots c_{\ell}$: $m=\mathrm{E}_{\mathrm{k}}^{-1}\left(c_{1}\right) \cdots \mathrm{E}_{\mathrm{k}}^{-1}\left(c_{\ell}\right)$

Security requirement:
c should leak neither m nor k !

Data Encryption Standard (DES)

1972: NBS (now NIST) aims to standardise a block cipher

1974: IBM designs Lucifer, which evolves into DES

Widely adopted (e.g., used in ATMs)

High-level design:

- Feistel network, made of successive rounds
- Each round = simple operation, using a bit of the secret key

Data Encryption Standard (DES): Feistel round

\longleftarrow Split message into left half $\left(L_{0}\right)$ and right half $\left(R_{0}\right)$
\longleftarrow
Apply some nonlinear (key-dependent) function F to R_{0} to get OTP key for L_{0}

Swap sides

Data Encryption Standard (DES): Feistel round

Split message into left half (L_{0}) and right half (R_{0})
Apply some nonlinear (key-dependent) function F to R_{0} to get OTP key for L_{0}

Swap sides

We can invert easily \rightarrow this is a permutation!

Data Encryption Standard (DES): round chaining

One round looks simple enough
\rightarrow in practice DES chains as many as 16 rounds

Block cipher evolution

DES key length: 56 bits \rightarrow brute-force vulnerability:

- DES cracker (1998, Electronic Frontier Foundation, US\$ 250,000)
- COPACOBANA (2006, U Bochum + Kiel, US\$ 10,000)

If $D E S$ is still used, then as Triple-DES, using three keys k_{1}, k_{2} and k_{3} :
$c=\operatorname{Encrypt}_{k_{3}}\left(\operatorname{Decrypt}_{k_{2}}\left(\operatorname{Encryp}_{k_{1}}(m)\right)\right)$
AES: new standard, established in 2001

- chosen during 'competition' established by National Institute for Standardisation (NIST)
- not Feistel-based: based on Rijndael cipher, designed by Daemen and Rijmen

Modes of operation

So far: block cipher encrypt ℓ bits of message
What if messages are longer than ℓ bits?
Just split + encrypt block-wise? ('Electronic codebook')

Image credit: T. Lange + J. Jean

Modes of operation

So far: block cipher encrypt ℓ bits of message
What if messages are longer than ℓ bits?
Just split + encrypt block-wise? ('Electronic codebook')

ECB penguin by en:User:Lunkwill

Secret-key encryption: wrap-up

Perfect secrecy is expensive (large keys)
One-time pad only is perfectly secure if we switch the key each time
In practice, we use a

- block cipher to encrypt blocks
- secure mode of operation (not ECB!) to encrypt messages longer than a single block

So far: discussed privacy, but not authenticity and/or integrity

Does secret-key encryption provide integrity?

Does secret-key encryption provide integrity?

Mr. Krabs knows his block ciphers \rightarrow tweaks ciphertext so it decrypts to 'pay 99000' instead of 'pay 20'.

Hash functions

Function generating short handle ('fingerprint') for larger pieces of data:

$$
\text { Hash: }\{0,1\}^{*} \rightarrow\{0,1\}^{n}
$$

Quite ubiquitous in crypto:

- message authentication codes (in a few slides: HMAC), e.g. in TLS
- digital certificates for public-key infrastructures
- public-key encryption, digital signatures (in second half of talk)
- secure password storage

Hash functions

Function generating short handle ('fingerprint') for larger pieces of data:

$$
\text { Hash: }\{0,1\}^{*} \rightarrow\{0,1\}^{n}
$$

Security goals: e.g. we could want that the fingerprints

- are hard to compute without knowing the data
- change a lot even when the data is changed only a tiny bit (e.g., bit flip)
- uniquely identify the data (PGP fingerprints)
- do not give enough information to reconstruct the data

Hash functions: security definitions

Function generating short handle ('fingerprint') for larger pieces of data:

$$
\text { Hash: }\{0,1\}^{*} \rightarrow\{0,1\}^{n}
$$

- Preimage resistance:

Given output $y \in\{0,1\}^{n}$, it's hard to find $x \in\{0,1\}^{*}$ with Hash $(x)=y$ ('preimage').
$<$ typically many!

- Second preimage resistance:

Given random input $x \in\{0,1\}^{*}$, it's hard to find $x^{\prime} \neq x$ with Hash $(x)=\operatorname{Hash}\left(x^{\prime}\right)$.

- Collision resistance:

It's hard to find x and $x^{\prime} \neq x$ with Hash $(x)=\operatorname{Hash}\left(x^{\prime}\right)$.

Hash functions: SHA-2 ('Secure hash algorithm')

Designed by the National Security Agency (NSA), first published in 2001.
Built using the Merkle-Damgård construction (next slide), from a compression function.

Main idea:

- easier to build fixed-size compression
- If you have secure compression function, MD gives you a hash function for free

Compression in SHA-2:

Davies-Meyer construction, using specialized block cipher

Family of keyed functions

$$
\mathrm{C}:\{0,1\}^{k} \times\{0,1\}^{2 n} \rightarrow\{0,1\}^{n}
$$

with inputs of fixed size $2 n$ that get 'compressed' to half their size.

Hash functions: Merkle-Damgård construction

Start with some initiation vector IV

$\operatorname{pad}(m)$:

- Dissect full message m into size- n blocks $M_{1}, \cdots M_{t}$ (to fit into compression function C)
- Use padding in the last block M_{t} to fill it up to size n

Each step takes n message bits as input, together with previous n-bit output h_{i-1}, and compresses these to n-bit block: $h_{i}=C\left(M_{i-1}, h_{i-1}\right)$.

Hash functions: Merkle-Damgård construction

Start with some initiation vector IV

$\operatorname{pad}(m)$:

- Dissect full message m into size- n blocks $M_{1}, \cdots M_{t}$ (to fit into compression function C)
- Use padding in the last block M_{t} to fill it up to size n

Pros of this iterative design:

- Simplifies security reasoning: if compression function C is collision-resistant, then so is H .
- Incremental computation nice for small devices (stream data one block at a time)

Hash functions evolution

SHA-1 (predecessor of SHA-2):

- flaws known since 2005, attacks public since 2017 (https://shattered.io/), 2020 (https://shambles.github.io/)
- still used for fingerprints (e.g., git) $)^{2}$

SHA-2:

- currently deemed secure
- widely used in various security applications and protocols

SHA-3: Latest addition to SHA family

- established during NIST standardization effort for hash functions
- not based on Merkle-Damgård, but on 'sponges'
- currently deemed secure

Hash functions good integrity checks?

Q: Does this ensure the integrity of M^{\prime} ?

Hash functions good integrity checks?

Q: Does this ensure the integrity of M^{\prime} ?
No: Mr. Krabs can pick his own c^{\prime} and compute $t a g^{\prime}$ for $c^{\prime} \rightarrow$ keyless integrity checks won't work!

Message authentication codes

MAC = 'checksum', taking key k and message M (plaintext or ciphertext) to produce authentication tag:

$$
\text { MAC: Keys } \times\{0,1\}^{m} \rightarrow\{0,1\}^{t}
$$

\rightarrow MAC can convince Paypal that M really comes from Spongebob
Security goal = UnForgeability: Computing a valid MAC without knowing k is hard.

- UF against Chosen Message Attacks (UF-CMA):
even when given the power to request $\operatorname{MAC}\left(k, M_{i}\right)$ on chosen messages M_{i}, computing a valid $\operatorname{MAC}\left(k, M^{\prime}\right)$ for a new a new $M^{\prime} \neq M_{i}$ is hard.

Hash-based MACs

Proposal: Take hash function Hash: $\{0,1\}^{*} \rightarrow\{0,1\}^{n}$ and set

$$
\operatorname{MAC}_{k}(M)=\operatorname{Hash}(k, M)
$$

Q: Hard to produce a valid $\mathrm{MAC}_{k}\left(M^{\prime}\right)$ if we can request $\mathrm{MAC}_{k}\left(M_{i}\right)$ for any M_{i} we like?

Hash-based MACs

Proposal: Take hash function Hash: $\{0,1\}^{*} \rightarrow\{0,1\}^{n}$ and set

$$
\operatorname{MAC}_{k}(M)=\operatorname{Hash}(k, M)
$$

Length extension attack :

Exploit 'chaining' structure of Hash: pick message $M=$ hello, request tag $=$ Hash (k, hello).

- View hello in padded block structure + add something: $M^{\prime}=$ hell $|o X X X|$ dork
- Tag for helloXXXdork:
$\operatorname{Hash}(k$, helloXXXdork $)=\operatorname{Hash}(H a s h(k$, hello $)$, dork $)=$ Hash(tag,dork)
Without knowing k, we can forge a tag for the message helloXXXdork!

Hash-based MACs: HMAC

Puts the key k

- at the end to prevent length-extension attacks (you'd need to know dork|k),
- but also at the beginning (to deal with collisions).

Mixes up k via two different padding strings (ipad, opad), so that the MAC doesn't use the same key twice

$$
\operatorname{HMAC}_{k}(M)=\operatorname{Hash}(k \oplus \operatorname{opad}, \operatorname{Hash}(k \oplus \operatorname{ipad}, M))
$$

Authenticated encryption

We looked at privacy and authenticity separately:

Goal	Primitive	Security notion
Data privacy	Secret-key encryption	IND-CPA: Hard to tell Encrypt $_{K}\left(m_{1}\right)$ from Encrypt $_{K}\left(m_{2}\right)$
Data authenticity / integrity	Message authentication code	UF-CMA: Hard to forge $M A C\left(k, M^{\prime}\right)$, even when seeing $\operatorname{MAC}\left(k, M_{1}\right)$, $M A C\left(k, M_{2}\right), \cdots$

Q: How to achieve both goals at once?

Three common combination approaches

- Encrypt-and-MAC
- used in SSH

Privacy?
Adversaries can detect resent messages because MAC is deterministic

Three common combination approaches

- Encrypt-and-MAC
- used in SSH
- not secure per se (SSH uses modifications)

Integrity?
Not necessarily: may be able to tweak C into c^{\prime} in a way that its decryption is still the same. Then t is still valid!

Three common combination approaches

- Encrypt-and-MAC
- used in SSH
- not secure per se (SSH uses modifications)
- MAC-then-Encrypt
- used in TLS 1.2

Privacy?

If encryption is IND-CPA secure,

- resent messages are unnoticeable (despite MAC)
- the MAC-then-encrypt construction is also IND-CPA secure

Three common combination approaches

- Encrypt-and-MAC
- used in SSH
- not secure per se (SSH uses modifications)
- MAC-then-Encrypt
- used in TLS 1.2
- not secure per se, but can be if done right

Integrity?
Same problem as before!

Three common combination approaches

- Encrypt-and-MAC
- used in SSH
- not secure per se (SSH uses modifications)
- MAC-then-Encrypt
- used in TLS 1.2
- not secure per se, but can be if done right
- Encrypt-then-MAC
- used in IPSec
- Privacy: IND-CPA if Encryption is IND-CPA
- Integrity: no computing right t^{\prime} for c^{\prime} without $k_{M A C}$

Proof sketch: Encrypt-then-MAC is IND-CPA

Want to show: if Encrypt is IND-CPA secure, then so is Encrypt-then-MAC.
Encrypt-then-MAC $\left(k_{E N C}, k_{M A C}, m\right)=(c, t)$ with $c=\operatorname{Encrypt}\left(k_{E N C}, m\right)$ and $t=M A C\left(k_{M A C}, c\right)$
Tool: Turn attack on Encrypt-then-MAC into attack on Encrypt ('security reduction'):

- Show: Successful attack on Encrypt-then-MAC gives successful attack on Encrypt
- But Encrypt is secure. So no successful attack on Encrypt-then-MAC can exist!

IND-CPA attack on
Encrypt-then-MAC

Encrypt-then-MAC
functionality

$$
\begin{aligned}
& c=\text { encryption of } \\
& \text { either } m_{1} \text { or } m_{2}
\end{aligned}
$$

$$
t=M A C\left(k_{M A C}, c\right)
$$

Proof sketch: Encrypt-then-MAC is IND-CPA

Want to show: if Encrypt is IND-CPA secure, then so is Encrypt-then-MAC.

$$
\text { Encrypt-then-MAC }\left(k_{E N C}, k_{M A C}, m\right)=(c, t) \text { with } c=\operatorname{Encrypt}\left(k_{E N C}, m\right) \text { and } t=M A C\left(k_{M A C}, c\right)
$$

Tool: Turn attack on Encrypt-then-MAC into attack on Encrypt ('security reduction'):

- Show: Successful attack on Encrypt-then-MAC gives successful attack on Encrypt
- But Encrypt is secure. So no successful attack on Encrypt-then-MAC can exist!

Encrypt functionality

(c, t) belongs to m_{1} / m_{2} !

How to share a secret key?

Public-key encryption (PKE)

Alice

Public-key encryption (PKE)

Security definitions

Key server

Ciphertext indistinguishability games

Indistinguishability under chosen-plaintext attacks = public key version of symmetric-key IND-CPA:

Left game	Right game
Adversary gets public key Adversary picks two messages m1 and m 2 Adversary gets encryption of:	
$\mathrm{m} 1 \quad \mathrm{~m} 2$	
Adversary guesses which game it's playing	

Question: Can we have IND-CPA security if encryption is deterministic*?

* = encrypting a message m always gives the same result

Ciphertext indistinguishability games

Indistinguishability under chosen-plaintext attacks = public key version of symmetric-key IND-CPA:

Left game	Right game
Adversary gets public key Adversary picks two messages m1 and m 2 Adversary gets encryption of:	
m 1	m 2
Adversary guesses which game it's playing	

Question: Can we have IND-CPA security if encryption is deterministic*?

No, but encryption could still be hard to invert.

* = encrypting a message m always gives the same result

PKE example: Schoolbook RSA

How could Alice encrypt ,sell'?

RSA: computations with primes!

Schoolbook RSA = simplification of PKCS\#1, the PKE scheme used in TLS's predecessor.

PKE example: Schoolbook RSA

PKE example: Schoolbook RSA

PKE example: Schoolbook RSA

Example:

$$
\begin{aligned}
& e=5, d=13 \\
& x=2 \\
& x^{e}=2^{5}=32
\end{aligned}
$$

$\left(2^{e}\right)^{d}=32^{13}$ (large, but has remainder 2!)
Also works for $x=3, x=4, x=5, \ldots$

PKE example: Schoolbook RSA

Security intuition: RSA = trapdoor permutation

Like on the previous slides, we take

- as modulus N a prime product.
- e, d s.th. dividing $\left(x^{e}\right)^{d}$ by N always has remainder x.

$$
\begin{aligned}
\operatorname{RSA}_{e}:\{1,2,3, \cdots, N-1\} & \rightarrow\{1,2,3, \cdots, N-1\} \\
x & \mapsto x^{e} \bmod N
\end{aligned}
$$

By choice of e and d, RSA_{e} is a permutation
So-called trapdoor one-way permutation: Computing x^{e} is easy, inverting is

- believed to be hard given only N and e (public key) \leftarrow if we chose the parameters appropriately (!)
- easy given trapdoor d (the secret key)
\triangle RSA $_{e}$ may be hard to invert, but is deterministic \rightarrow no IND-CPA security!
§ In practice, we need appropriate padding.

Chosen-ciphertext attacks

Chosen-ciphertext attacks

Alice

Chosen-ciphertext attacks

Alice

Chosen-ciphertext attacks

Chosen Ciphertext Attacks Against Protocols

Based on the RSA Encryption Standard PKCS \#1

Daniel Bleichenbacher
Bell Laboratories
700 Mountain Ave.
Murray Hill, NJ 07974
E-mail: bleichen@research.bell-labs.com
[Bleichenbacher 98]

Ciphertext indistinguishability games

IND-CCA security: Indistinguishability under chosen-ciphertext attacks.

Like IND-CPA:

Left game	Right game
Adversary gets public key Adversary picks two messages m1 and m2 Adversary gets encryption of:	
m 1	m 2
Adversary guesses which game it's playing	

Difference to IND-CPA: Adversary can additionally request decryptions for any ciphertext is chooses...

Wait, can't this always be won?

Ciphertext indistinguishability games

IND-CCA security: Indistinguishability under chosen-ciphertext attacks.

Like IND-CPA:

Left game	Right game
Adversary gets public key Adversary picks two messages m 1 and m 2 Adversary gets encryption of:	
m 1	m 2
Adversary guesses which game it's playing	

Difference to IND-CPA: Adversary can additionally request decryptions for any ciphertext is chooses... except the provided encryption of $\mathrm{m} 1 / \mathrm{m} 2$

Back to what we wanted

Goal: Find a public-key method to securely establish symmetric keys $K_{\text {sym }}$.
(Why not just use PKE to send encrypted messages? Efficiency.)
This is called a Key Encapsulation Mechanism (KEM).

Bob's public key

Alice

Key Encapsulation Mechanisms (KEMs)

A KEM consists of 3 Algorithms:

1. KeyGen: Outputs a public/secret key pair ($p k, s k$)
2. Encapsulate $(p k)$: Uses $p k$ to create $K_{\text {sym }}$ and a ciphertext c
3. Decapsulate($s k, c$): Uses $s k$ to recreate $K_{\text {sym }}$ from c

KEMs: Security definition

A ciphertext c shouldn't leak substantial information about $K_{\text {sym }}$.

Indistinguishability game for KEMs

IND-CPA-KEM security: Indistinguishability for KEMs.

Left game	Right game
Adversary gets public key	
Adversary gets ciphertext c computed via Encapsulate, together with	
The $K_{\text {sym }}$ that accompanied c	A uniformly random $K_{\text {sym }}$
Adversary guesses which game it's playing	

KEMs in practice: NIST 'competition'

Shared approach: PKE from hardness assumption + Fujisaki-Okamoto 'recipe'
Fujisaki-Okamoto (FO) :

- 'generic' encryption-to-key-encapsulation recipe
- ${ }_{k} r_{r}{ }_{B}=$ moduleLWE encryption, plugged into FO recipe

Bob's public key

Fujisaki-Okamoto KEMs: initial idea

Goal: Find a way to establish symmetric keys $K_{\text {sym }}$, securely.
You may use a public-key encryption scheme.

Fujisaki-Okamoto KEMs: initial idea

Goal: Find a way to establish symmetric keys $K_{\text {sym }}$, se
You may use a public-key encryption scheme.

Bob's
public key

Fujisaki-Okamoto KEMs: initial idea

Goal: Find a way to establish symmetric keys $K_{\text {sym }}$, securely.
You may use a public-key encryption scheme and a hash function.

Fujisaki-Okamoto K

Goal: Find a way to establish syr
You may use a public-key encryp

Assume (!) Hash outputs are unpredictable + unrelated
$\rightarrow A$ has 0 chance distinguishing without computing Hash (m) itself ... for which it needs to know m ... meaning it inverted encryption!

Q: Is this secure?

Bob's public key

Security against chosen-ciphertext attacks

Goal: Find a way to establish symmetric keys $K_{\text {sym }}$ with chosen-ciphertext security.
\rightarrow attacker allowed to request decapsulation for any ciphertext.

Only high-level: slightly alter how the KEM en-/decapsulates:
Altered decapsulation will

- detect malicious ciphertexts
- punish those by rejecting to return a meaningful key.
\rightarrow hard for attacker to request useful decapsulations

It is still being researched today which altering strategy works best!

Take-aways

PKEs give us privacy (without secret meetings), KEMs make this more efficient.
We have a 'cooking recipe' for turning PKE into a KEM (called Fujisaki-Okamoto).
We used a ,lego‘ approach very common in crypto:

Q: how can we guarantee data authenticity/integrity?

Digital signatures - a bit like MACs:

Digital signatures: security goals

Security goal = UnForgeability: Computing a valid signature without knowing secret key $\mathrm{s} k$ is hard.
(Attackers will know the public key, though.)

- UF against Chosen Message Attacks (UF-CMA): even given the power to request signatures on chosen messages m_{i}, a valid signature for a new message $m^{\prime} \neq m_{i}$ is hard to produce.

Digital signatures - a bit like MACs, but not fully:

Schoolbook RSA signatures

Remember RSA function: We take

- as modulus N a prime product.
- e, d s.th. dividing $\left(x^{e}\right)^{d}$ by N always has remainder $x \rightarrow \mathrm{RSA}_{e}$ is a permutation:

$$
\begin{aligned}
\operatorname{RSA}_{e}:\{1,2,3, \cdots, N-1\} & \rightarrow\{1,2,3, \cdots, N-1\} \\
x & \mapsto x^{e} \bmod N
\end{aligned}
$$

Like before, we set: public key \square $=(N, e)$, secret key $=d$:

Schoolbook RSA signatures

Remember RSA function: We take

- as modulus N a prime product.
- e, d s.th. dividing $\left(x^{e}\right)^{d}$ by N always has remainder $x \rightarrow \mathrm{RSA}_{e}$ is a permutation:

Alice

Q: Is this secure?

Can Mr. Krabs - only knowing the public key N, e, but not $d-$ sign a message such that Bob accepts the signature?)

Q: Is this secure?

Can Mr. Krabs - only knowing the public key N, e, but not $d-$ sign a message such that Bob accepts the signature?)

Key-only forgery: Pick arbitrary 'signature' s, set $m=s^{e} \bmod N$ $\rightarrow s$ is a valid signature for m that will be accepted by Bob!
In practice, however, m might look unconvincing to the recipient.

Q: Is this secure?

Can Mr. Krabs - only knowing the public key N, e, but not $d-$ sign a message such that Bob accepts the signature?)

Targetted forgery via signature requests: Choose target message m^{*}.
We'll exploit the multiplicative property of the RSA function ('verification preserves multiplication'):

$$
\left(s_{1} \cdot s_{2}\right)^{e}=s_{1}^{e} \cdot s_{2}^{e} \bmod N
$$

Attack:

- Pick arbitrary message m_{1}, and m_{1}^{-1} such that $m_{1} m_{1}^{-1} \bmod N=1$.
- Request signature s_{1} for m_{1} : you get $s_{1}=m_{1}^{d}$
and signature s_{2} for $m_{2}=m_{1}^{-1} \cdot m^{*}$: you get $s_{2}=m_{2}^{d}$
Sign m^{*} with $s^{*}=s_{1} \cdot s_{2} \rightarrow$ Bob accepts since $\left(s^{*}\right)^{e}=m^{*} \bmod N$:

$$
\left(s^{*}\right)^{e}=s_{1}^{e} \cdot s_{2}^{e}=m_{1} \cdot m_{2}=m_{1} \cdot m_{1}^{-1} \cdot m^{*}=m^{*} \bmod N
$$

Q: Can we tweak this so it becomes secure?

Idea: Pick hash function Hash: $\{0,1\}^{*} \rightarrow\{1,2,3, \cdots, N-1\}$, sign messages $m \in\{0,1\}^{*}$ by applying RSA signature approach to $\operatorname{Hash}(m)$.

Advantage 1: We can now sign arbitrary-length messages.
Advantage 2: Targetted attack a lot harder: need to find m, m_{1}, m_{2} such that
$\operatorname{Hash}(m)=\operatorname{Hash}\left(m_{1}\right) \cdot \operatorname{Hash}\left(m_{2}\right) \bmod N$

Abstraction of tweak : full domain hash (FDH)

Take trapdoor one-way permutation Π (like the RSA function): computing

- $\Pi(p k, x)$ is easy (e.g., x^{e})
- $\Pi^{-1}(s k, y)$ is (e.g., $\left.y^{d}\right)$
- hard when not knowing $s k$
- easy when knowing $s k$

Alice's public key

Approach based on identification schemes

Hey Alice, is this really you?

Alice's secret key

Approach based on identification schemes

Take-aways

We have a 'cooking recipe' for building signatures from a one-way trapdoor function We again used the 'lego‘ approach:

There are also other 'recipes' you will probably encounter during this week All known recipes require some hardness assumption (e.g., 'inverting x^{e} is hard')

Q: how would we prove security against quantum attackers? (next talk)

Post-quantum crypto

RSA Problem that (hopefully) is hard even for quantum computers

If time permits: random oracle model (ROM)

Heuristic: Replace hash function
Hash: $\{0,1\}^{n} \rightarrow\{0,1\}^{m}$
with 'oracle box' for truly random

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}
$$

If time permits: random oracle model (ROM)

Heuristic: Replace hash function
Hash: $\{0,1\}^{n} \rightarrow\{0,1\}^{m}$
with 'oracle box' for truly random

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}
$$

Reduction B
Oracle for f

Perks of the random oracle model

- Unpredictability of $f(x)$
- 'Tricking A^{\prime} : Picking the ys smartly enough, B can
a) trick A into solving B 's problem
b) feign secret knowledge it would - in principle - need for A's security game
\qquad

Practice example: ROs as one-way functions

Short DIY break:

Try to reason why it is hard for A to win the one-way game if n is large enough!

Oracle for $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

Practice example: ROs as one-way functions

Say A makes q many queries to f

- Per query $x \neq x^{*}: f$ returns y^{*} with probability $\frac{1}{2^{n}}$
- A queries f on x^{*} with probability $\lesssim \frac{q}{2^{n}}$
- If no query yields $y^{*}: f\left(x^{\prime}\right)=y^{*}$ with probability $\frac{1}{2^{n}}$

$\operatorname{Pr}[A$ wins $] \lesssim \frac{q}{2^{n}}+\frac{q}{2^{n}}+\frac{1}{2^{n}}$

This heuristic seems weird.

) No theoretical justification
Counterexamples: designs that are

- secure in the ROM, but
- insecure when instantiating RO with any hash function
© So far: good track record for 'natural' schemes
Helps identify design bugs

