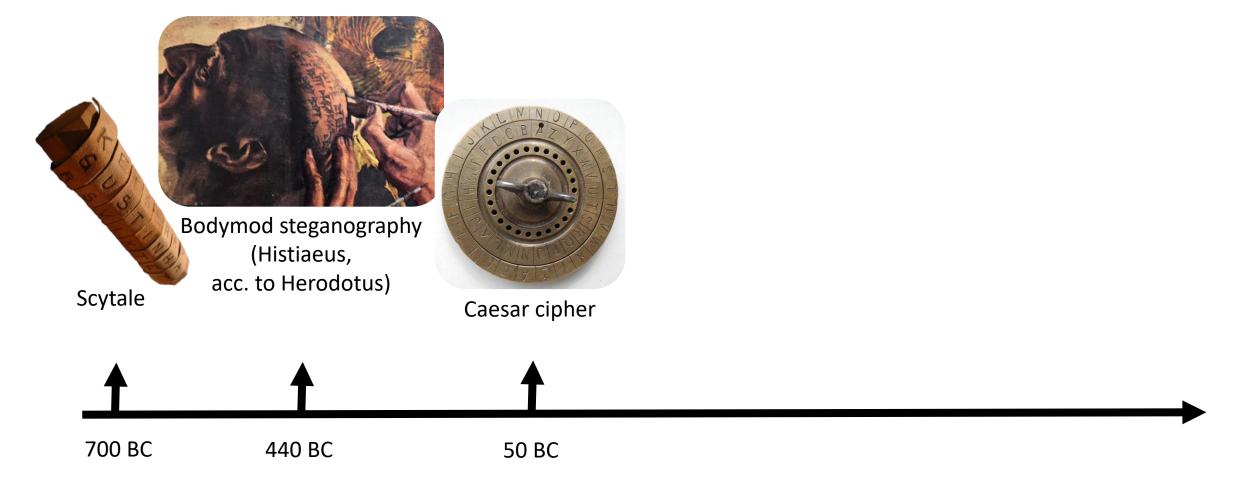
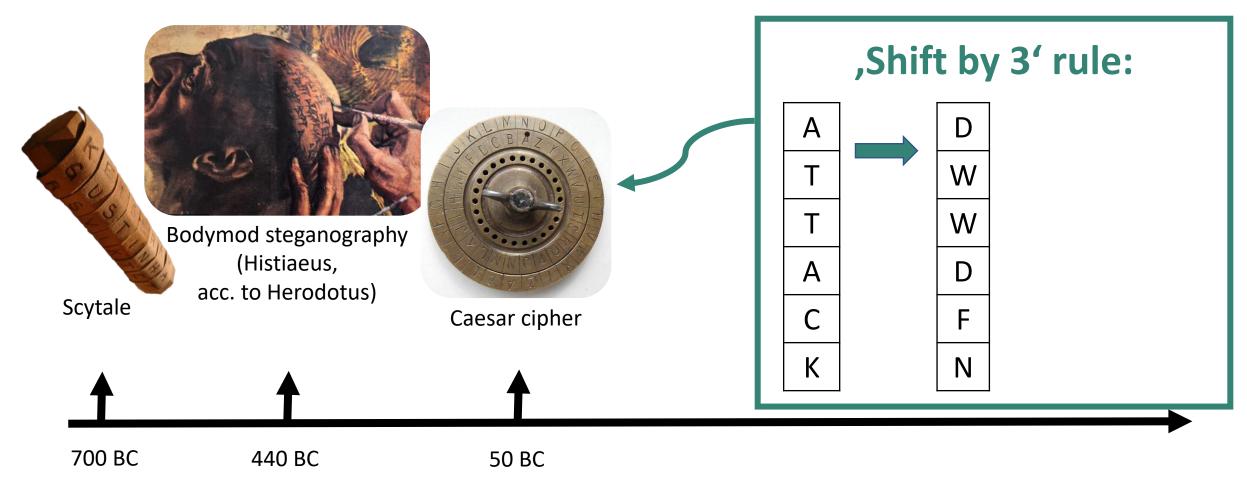
Intro to crypto

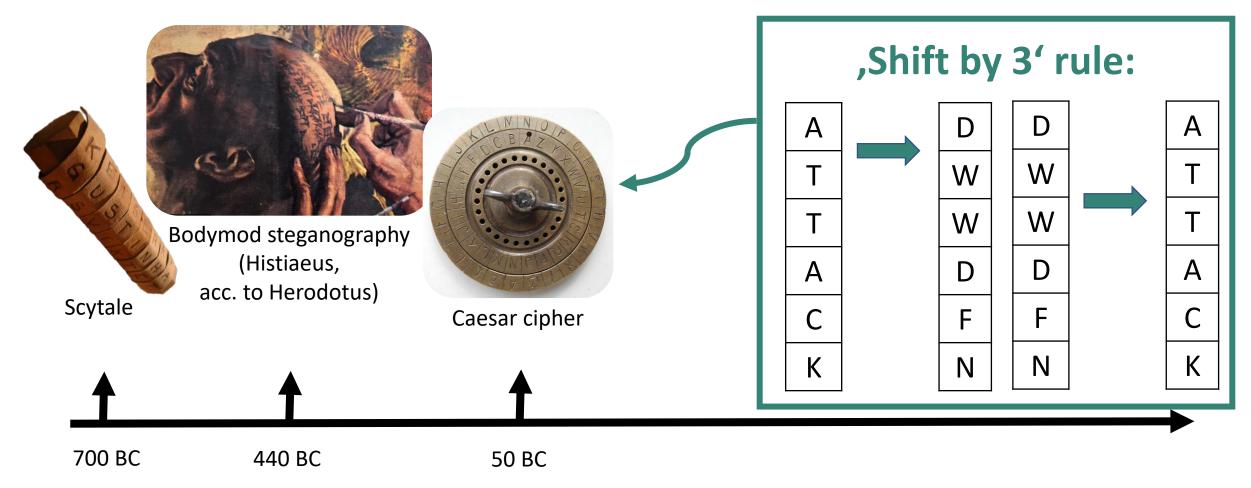
PQC Spring School 2024

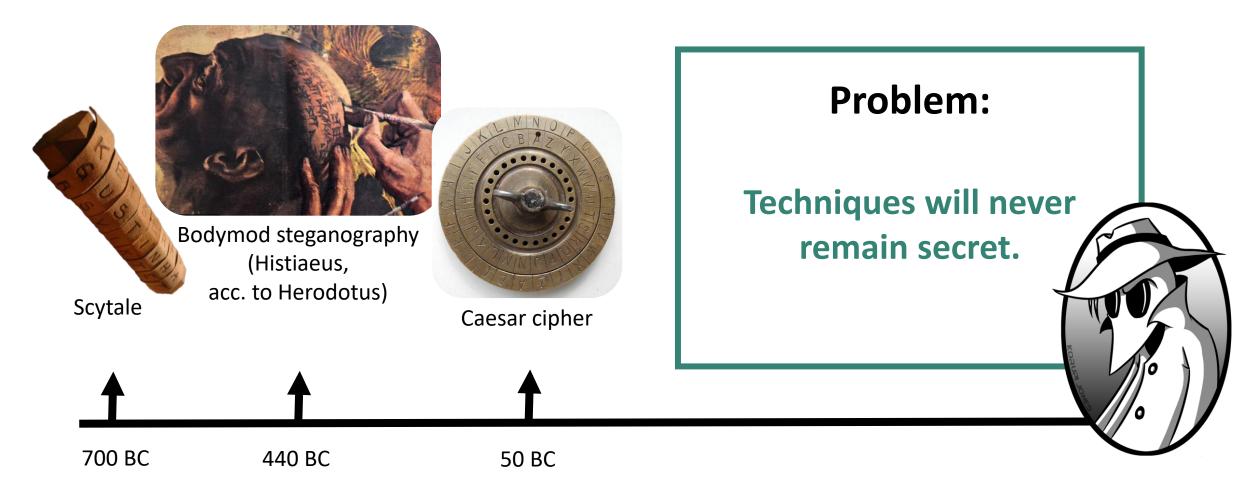
Kathrin Hövelmanns

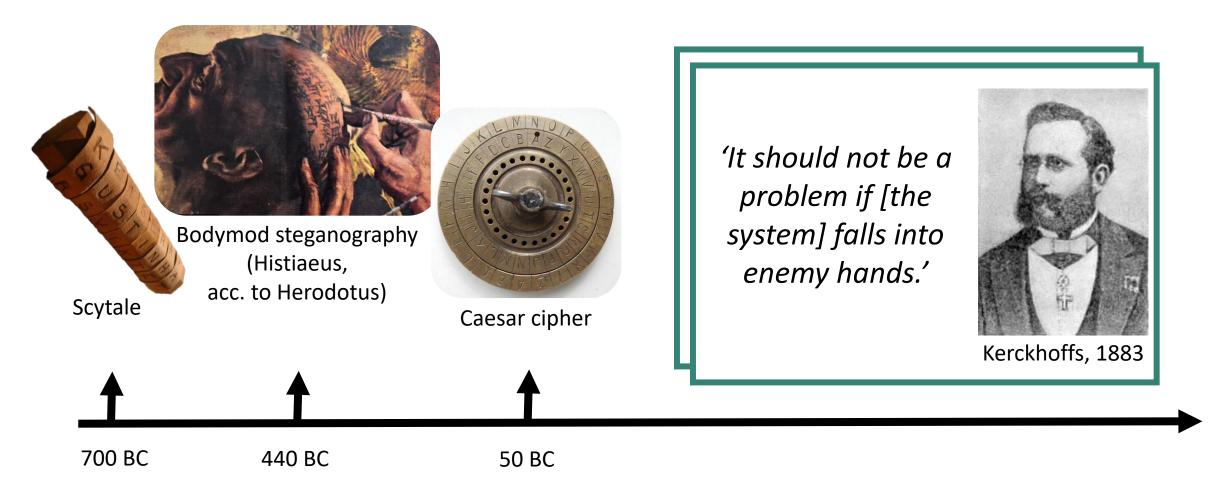
March 12th, 2024

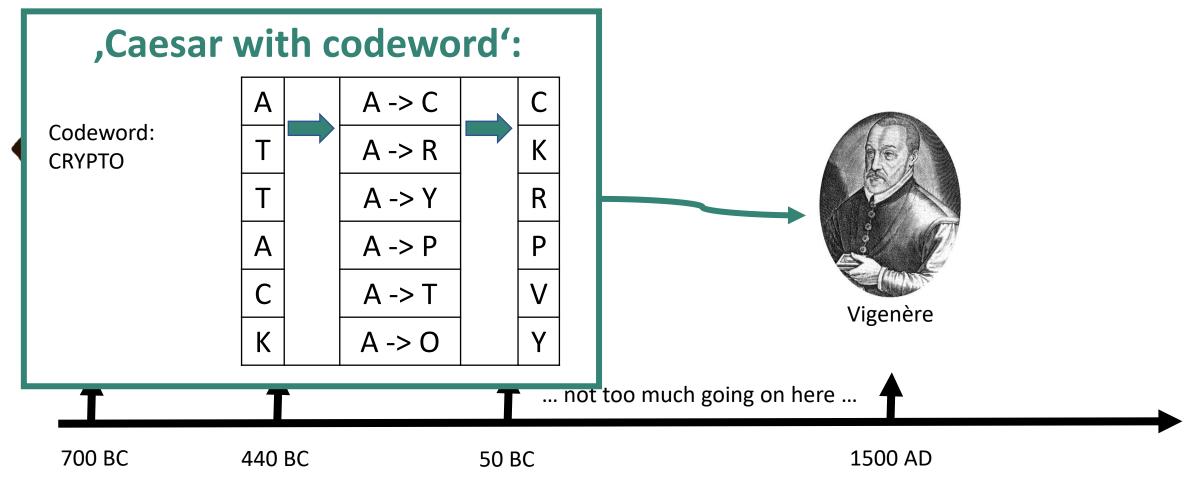


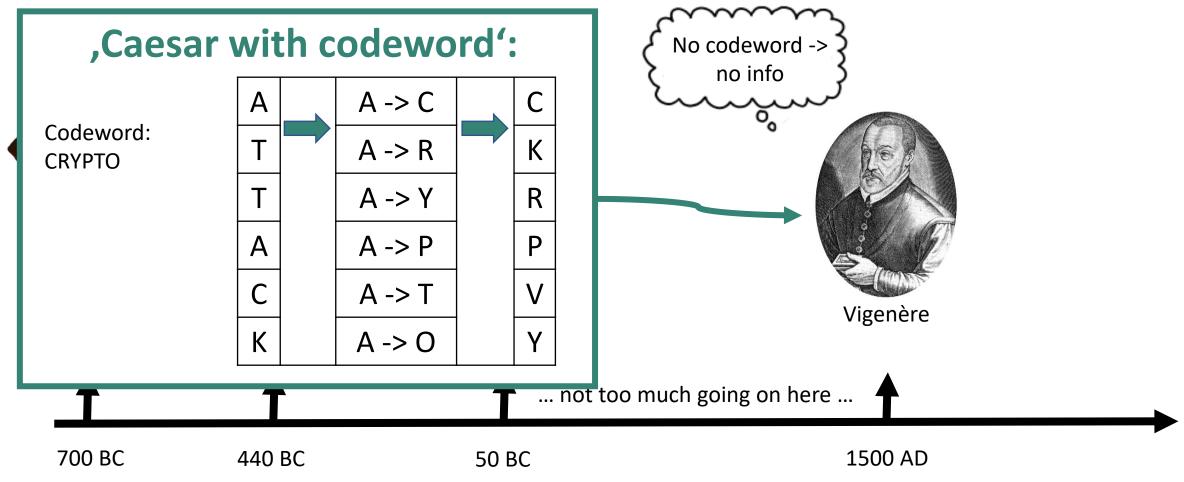


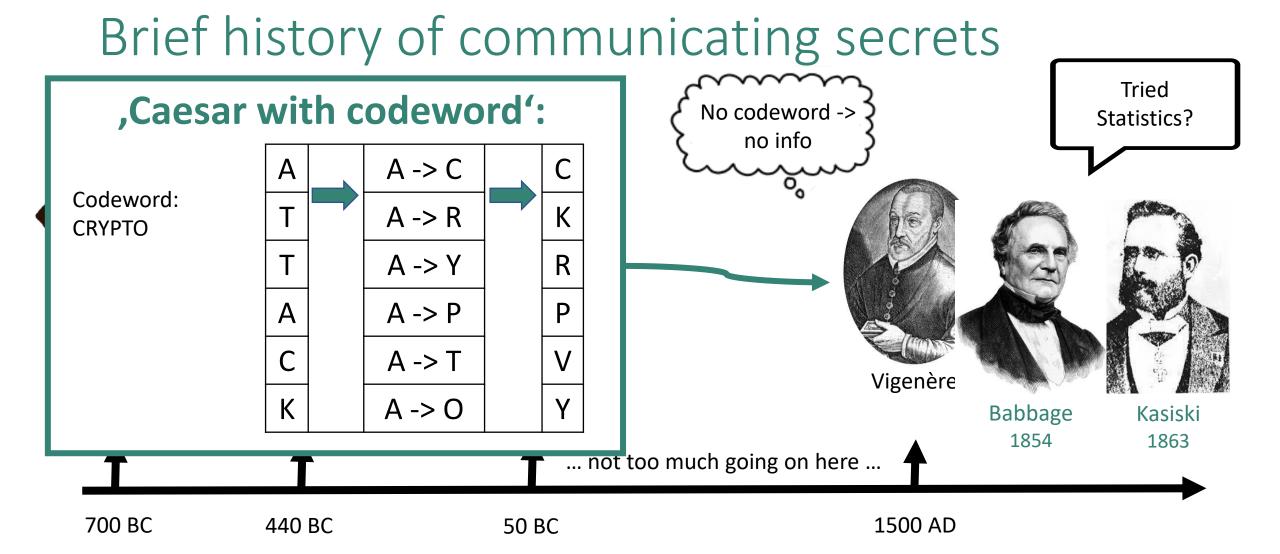


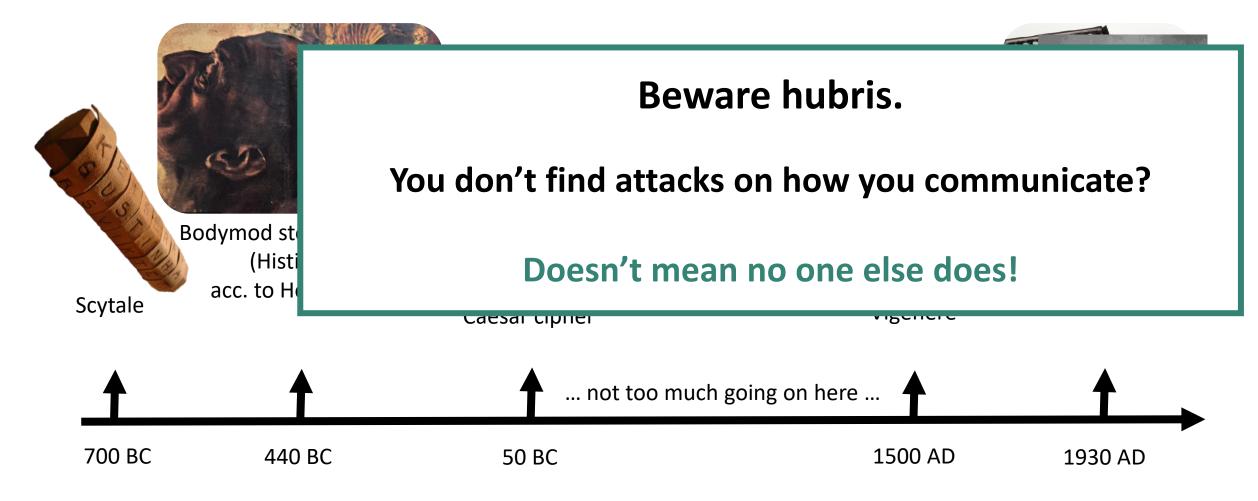




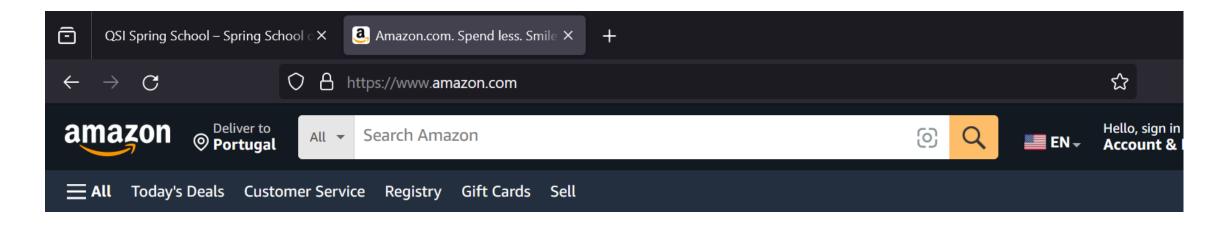








Did you use any cryptography today?



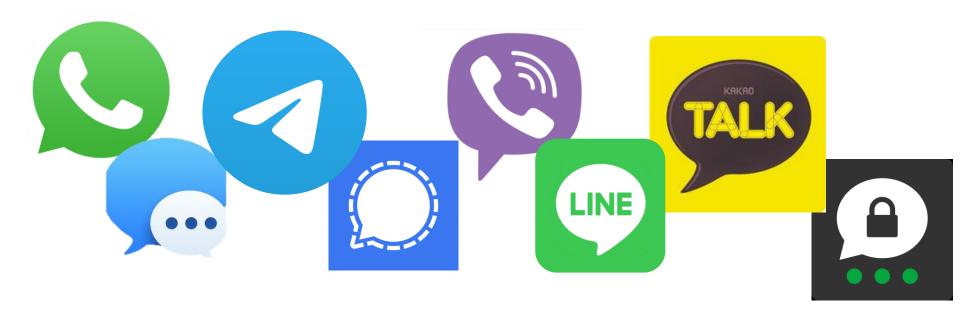
Amazon uses https, https invokes the TLS protocol

TLS uses cryptography

TLS is actually quite ubiquitous:

shopping, banking, Netflix, gmail, Facebook (yes, I'm old), ...

Did you use any cryptography today?



Secure instant messaging:

How many apps do you use?

What do we want from cryptography?

Privacy:

Keeping secrets secret.

Integrity + authenticity:

Ensure that message really came from declared sender + arrived unaltered

Secret-key encryption

Encrypt takes plaintext and key,
and produces ciphertext

Decrypt takes ciphertext and key, and produces plaintext

Goal #1: Confidentiality despite espionage (prerequisite: adversary does not know key)

One-time pad

Key K is picked uniformly random from ℓ -bit strings: $K \leftarrow \{0,1\}^{\ell}$

Plain- and ciphertexts are also ℓ -bit strings: $m, c \in \{0,1\}^{\ell}$

 $Encrypt_K(m) = K \oplus m$: add K and m, modulo 2 in each position $\mod 2 = \text{divide by 2}$, take remainder

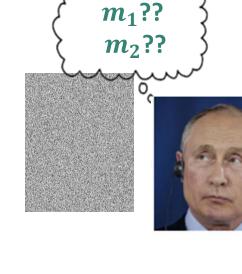
e.g.,
$$01 \oplus 11 = (0 + 1 \mod 2)(1 + 1 \mod 2) = 10$$

 $Decrypt_K(c) = K \oplus c$

This works: $Decrypt_K(Encrypt_K(m)) = K \oplus Encrypt_K(m) = K \oplus K \oplus m = m$

Perfect security

Formally: (KeyGen, Encrypt, Decrypt) perfectly secure iff for all plaintexts m_1, m_2 and all ciphertexts c:



$$Pr[Encrypt_K(m_1) = c] = Pr[Encrypt_K(m_2) = c]$$

Probability taken over the choice of key K

Important fact (Shannon): only possible if there are as many keys as there are potential messages

One-time pad is perfectly secure

One-time pad: $Encrypt_K(m) = K \oplus m$, K chosen randomly

Suppose adversary

- gets c = 01
- knows: m is either m_1 = 11 or m_2 = 01
- but doesn't know K

Can it tell which message m was?

No: could be m_1 = 11 (if K= 10) or m_2 = 01 (if K= 00) both equally likely!

One-time pad is perfectly secure... if used once

One-time pad: $Encrypt_K(m) = K \oplus m$, K chosen randomly

Suppose

- adversary sees first encryption: $c_1 = 01$
- but now also $c_2 = c_1 = 01$

→ Adversary learns that same message was sent twice

Computational security

We want to encrypt

- arbitrary amounts of data
- with a single, short key
- → perfectly secure symmetric-key encryption infeasible in practice

Computational security ('IND-CPA') as relaxation of security goal:

Telling $Encrypt_K(m_1)$ from $Encrypt_K(m_2)$ should be

- computationally infeasible (INDistinguishability),
- even if you chose m_1 and m_2 yourself (Chosen Plaintext Attack).

Permutations

A permutation is a mapping $\Pi: S \to S$ from some set S to itself that is one-to-one.

In other words: Π has an inverse $\Pi^{-1}: S \to S$.

Example: $S = \{A, B, C\}$

A permutation and its inverse:

X	A	В	C
$\pi(x)$	C	A	В

у	A	В	С
$\pi^{-1}(x)$	В	С	A

Not a permutation:

X	A	В	C
$\pi(x)$	C	В	В

Block ciphers are families of permutations

Block ciphers = two-input functions

E:
$$Keys \times \{0,1\}^{\ell} \to \{0,1\}^{\ell}$$

so such each key K gives us a permutation

$$E_K: \{0,1\}^{\ell} \to \{0,1\}^{\ell}$$
$$x \mapsto E(K,x)$$

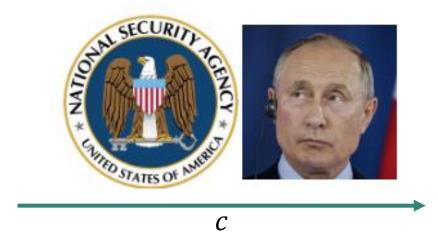
(so for each key K, E_K has an inverse E_K^{-1})

(For practice: all functions E_K , E_K^{-1} should be efficiently computable)

Using block ciphers to encrypt

Encrypting $m=m_1\cdots m_\ell$:

$$c = \mathrm{E}_{\mathrm{k}}(m_1) \cdots \mathrm{E}_{\mathrm{k}}(m_\ell)$$



Security requirement: c should leak neither m nor k!

Decrypting
$$c = c_1 \cdots c_\ell$$
:

$$m = E_{\mathbf{k}}^{-1}(c_1) \cdots E_{\mathbf{k}}^{-1}(c_{\ell})$$

Data Encryption Standard (DES)

1972: NBS (now NIST) aims to standardise a block cipher

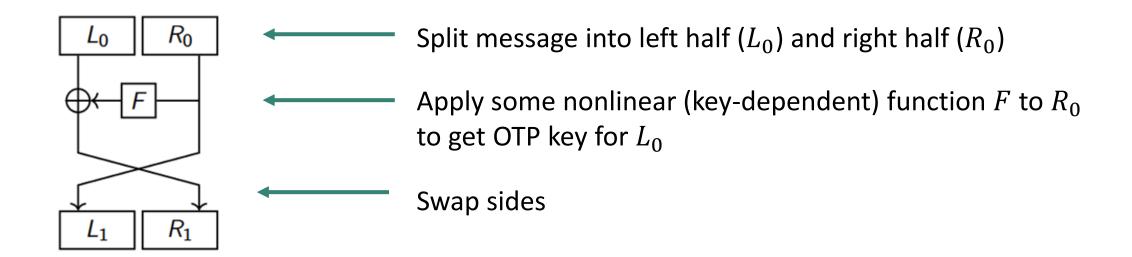
1974: IBM designs Lucifer, which evolves into DES

Widely adopted (e.g., used in ATMs)

High-level design:

- Feistel network, made of successive rounds
- Each round = simple operation, using a bit of the secret key

Data Encryption Standard (DES): Feistel round



Data Encryption Standard (DES): Feistel round

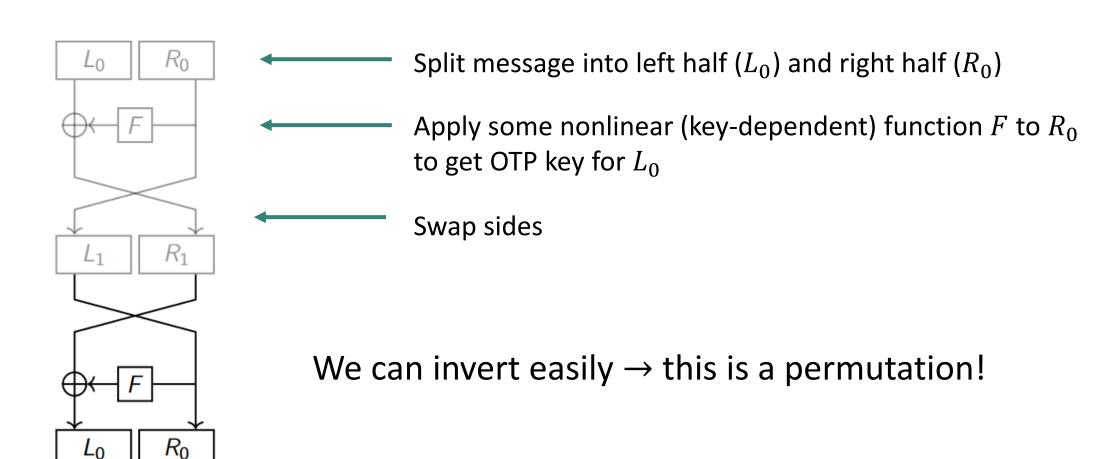


Image credit: E. Thome

Data Encryption Standard (DES): round chaining

One round looks simple enough

→ in practice DES chains as many as 16 rounds

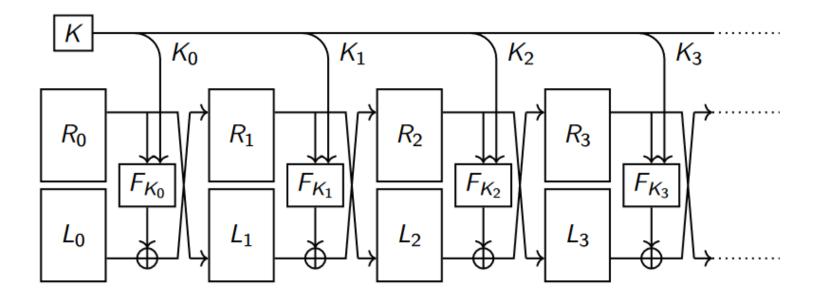


Image credit: E. Thome

Block cipher evolution

DES key length: 56 bits → brute-force vulnerability:

- DES cracker (1998, Electronic Frontier Foundation, US\$ 250,000)
- COPACOBANA (2006, U Bochum + Kiel, US\$ 10,000)

If DES is still used, then as Triple-DES, using three keys k_1 , k_2 and k_3 :

$$c = Encrypt_{k_3} \left(Decrypt_{k_2} \left(Encrypt_{k_1}(m) \right) \right)$$

AES: new standard, established in 2001

- chosen during 'competition' established by National Institute for Standardisation (NIST)
- not Feistel-based: based on Rijndael cipher, designed by Daemen and Rijmen

Modes of operation

So far: block cipher encrypt ℓ bits of message

What if messages are longer than ℓ bits?

Just split + encrypt block-wise? ('Electronic codebook')

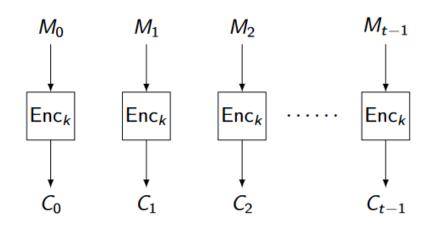


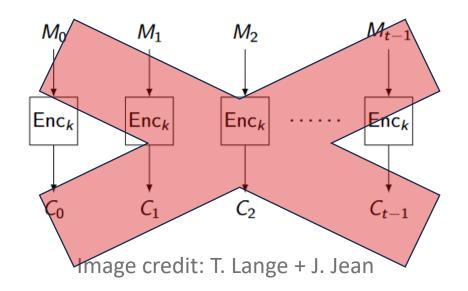
Image credit: T. Lange + J. Jean

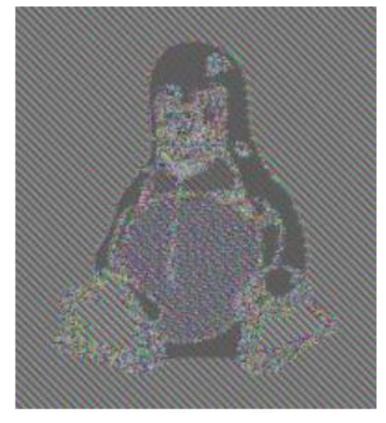
Modes of operation

So far: block cipher encrypt ℓ bits of message

What if messages are longer than ℓ bits?

Just split + encrypt block-wise? ('Electronic codebook')





ECB penguin by en:User:Lunkwill

Intro to crypto - K. Hövelmanns

Secret-key encryption: wrap-up

Perfect secrecy is expensive (large keys)

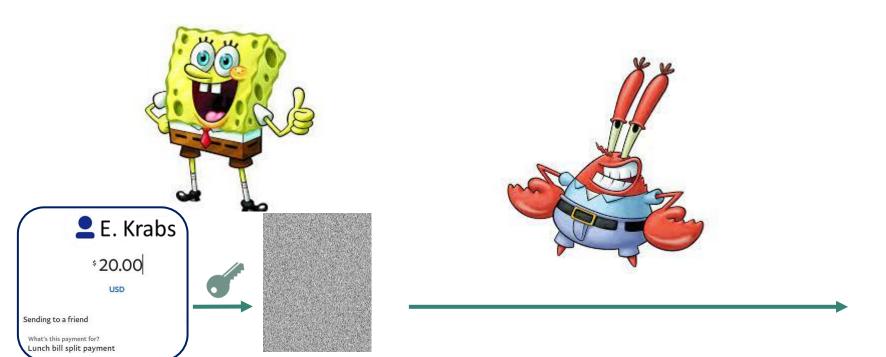
One-time pad only is perfectly secure if we switch the key each time

In practice, we use a

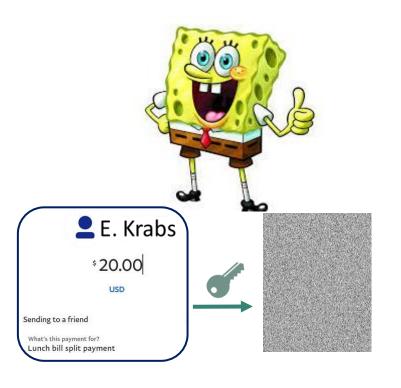
- block cipher to encrypt blocks
- secure mode of operation (not ECB!) to encrypt messages longer than a single block

So far: discussed privacy, but not authenticity and/or integrity

Does secret-key encryption provide integrity?



Does secret-key encryption provide integrity?



Mr. Krabs knows his block ciphers → tweaks ciphertext so it decrypts to 'pay 99000' instead of 'pay 20'.

Hash functions

Function generating short handle ('fingerprint') for larger pieces of data:

Hash:
$$\{0,1\}^* \to \{0,1\}^n$$

Quite ubiquitous in crypto:

- message authentication codes (in a few slides: HMAC), e.g. in TLS
- digital certificates for public-key infrastructures
- public-key encryption, digital signatures (in second half of talk)
- secure password storage

Hash functions

Function generating short handle ('fingerprint') for larger pieces of data:

Hash:
$$\{0,1\}^* \to \{0,1\}^n$$

Security goals: e.g. we could want that the fingerprints

- are hard to compute without knowing the data
- change a lot even when the data is changed only a tiny bit (e.g., bit flip)
- uniquely identify the data (PGP fingerprints)
- do not give enough information to reconstruct the data

Hash functions: security definitions

Function generating short handle ('fingerprint') for larger pieces of data:

Hash:
$$\{0,1\}^* \to \{0,1\}^n$$

• Preimage resistance:

Given output $y \in \{0,1\}^n$, it's hard to find $x \in \{0,1\}^*$ with Hash (x) = y ('preimage').

Second preimage resistance:

Given random input $x \in \{0,1\}^*$, it's hard to find $x' \neq x$ with Hash (x) = Hash (x').

Collision resistance:

It's hard to find x and $x' \neq x$ with Hash (x) = Hash (x').

Hash functions: SHA-2 ('Secure hash algorithm')

Designed by the National Security Agency (NSA), first published in 2001.

Built using the Merkle-Damgård construction (next slide), from a compression function.

Main idea:

- easier to build fixed-size compression
- If you have secure compression function,
 MD gives you a hash function for free

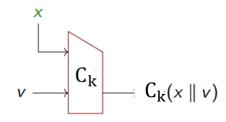
Compression in SHA-2:

Davies-Meyer construction, using specialized block cipher

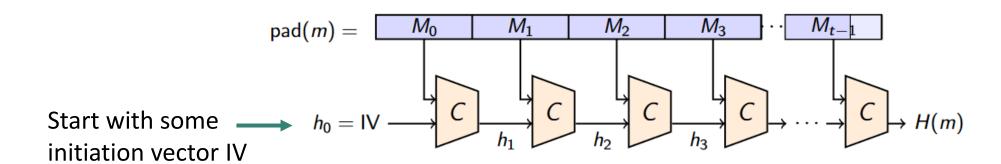
Family of keyed functions

$$C: \{0,1\}^k \times \{0,1\}^{2n} \to \{0,1\}^n$$

with inputs of fixed size 2n that get 'compressed' to half their size.



Hash functions: Merkle-Damgård construction

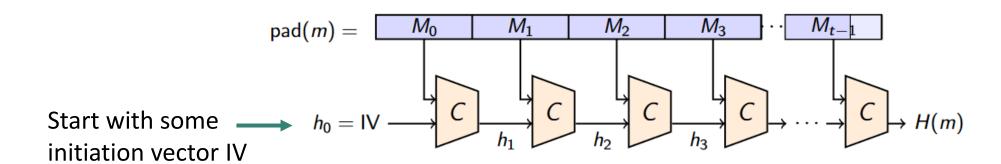


pad(m):

- Dissect full message m into size-n blocks M_1 , \cdots M_t (to fit into compression function C)
- Use padding in the last block M_t to fill it up to size n

Each step takes n message bits as input, together with previous n-bit output h_{i-1} , and compresses these to n-bit block: $h_i = C(M_{i-1}, h_{i-1})$.

Hash functions: Merkle-Damgård construction



pad(*m*):

- Dissect full message m into size-n blocks M_1 , \cdots M_t (to fit into compression function C)
- Use padding in the last block M_t to fill it up to size n

Pros of this iterative design:

- Simplifies security reasoning: if compression function C is collision-resistant, then so is H.
- Incremental computation nice for small devices (stream data one block at a time)

Hash functions evolution

SHA-1 (predecessor of SHA-2):

- flaws known since 2005, attacks public since 2017 (https://shattered.io/), 2020 (https://shattered.io/)
- still used for fingerprints (e.g., git) 🕾

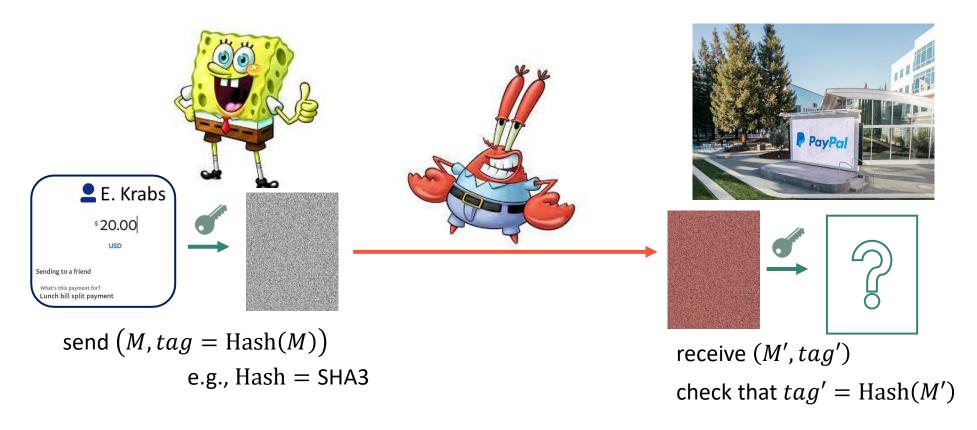
SHA-2:

- currently deemed secure
- widely used in various security applications and protocols

SHA-3: Latest addition to SHA family

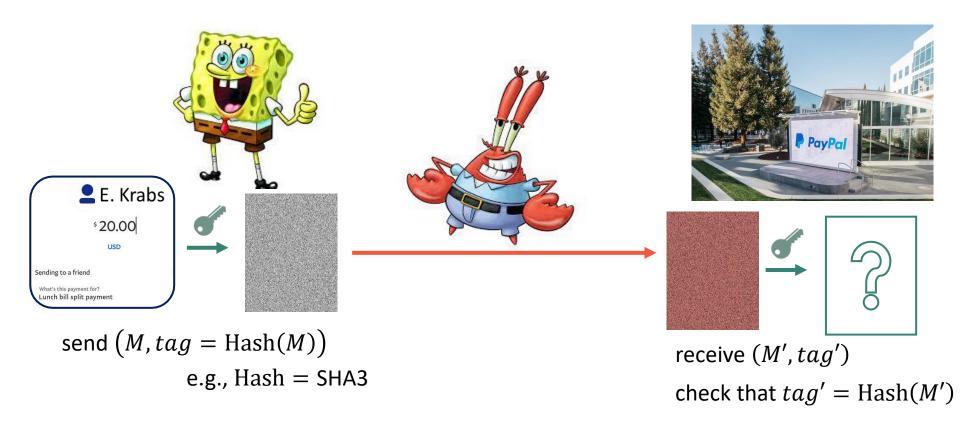
- established during NIST standardization effort for hash functions
- not based on Merkle-Damgård, but on 'sponges'
- currently deemed secure

Hash functions good integrity checks?



Q: Does this ensure the integrity of M'?

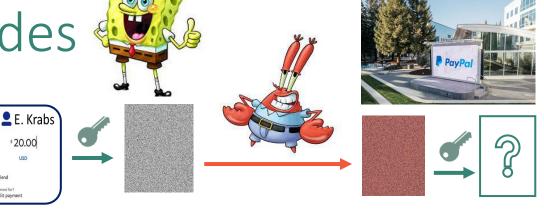
Hash functions good integrity checks?



Q: Does this ensure the integrity of M'?

No: Mr. Krabs can pick his own c' and compute tag' for $c' \rightarrow$ keyless integrity checks won't work!

Message authentication codes



MAC = 'checksum', taking key k and message M (plaintext or ciphertext) to produce authentication tag:

MAC:
$$Keys \times \{0,1\}^m \to \{0,1\}^t$$

 \rightarrow MAC can convince Paypal that M really comes from Spongebob

Security goal = UnForgeability: Computing a valid MAC without knowing k is hard.

UF against Chosen Message Attacks (UF-CMA):

even when given the power to request $MAC(k, M_i)$ on chosen messages M_i , computing a valid MAC(k, M') for a new a new $M' \neq M_i$ is hard.

Hash-based MACs

Proposal: Take hash function Hash: $\{0,1\}^* \to \{0,1\}^n$ and set

$$MAC_k(M) = Hash(k, M)$$

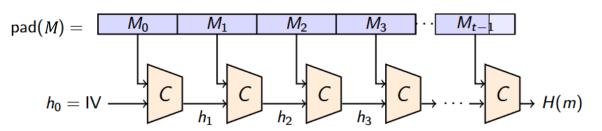
Q: Hard to produce a valid $MAC_k(M')$ if we can request $MAC_k(M_i)$ for any M_i we like?

Hash-based MACs

Proposal: Take hash function Hash: $\{0,1\}^* \to \{0,1\}^n$ and set

$$MAC_k(M) = Hash(k, M)$$

Length extension attack:



Exploit 'chaining' structure of Hash: pick message M = hello, request tag = Hash(k, hello).

- View hello in padded block structure + add something: M' = |hell|oXXX|dork
- Tag for helloXXXdork:

Hash(k, helloXXXdork) = Hash(Hash(k, hello), dork) = Hash(tag, dork)

Without knowing k, we can forge a tag for the message helloXXXdor k!

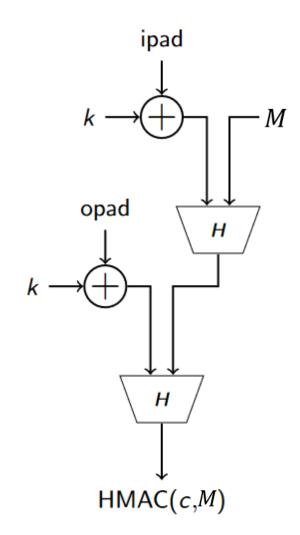
Hash-based MACs: HMAC

Puts the key *k*

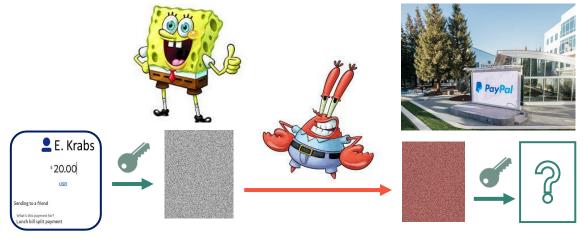
- at the end to prevent length-extension attacks (you'd need to know dork | k),
- but also at the beginning (to deal with collisions).

Mixes up k via two different padding strings (ipad, opad), so that the MAC doesn't use the same key twice

 $HMAC_k(M) = Hash(k \oplus opad, Hash(k \oplus ipad, M))$



Authenticated encryption

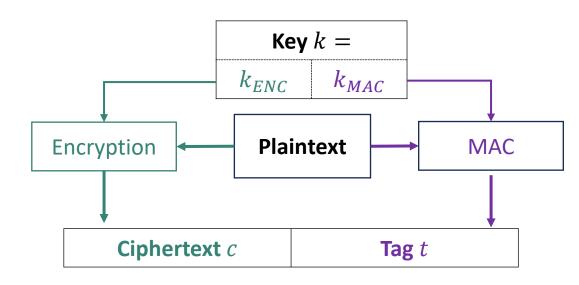


We looked at privacy and authenticity separately:

Goal	Primitive	Security notion
Data privacy	Secret-key encryption	IND-CPA: Hard to tell $Encrypt_K(m_1)$ from $Encrypt_K(m_2)$
Data authenticity / integrity	Message authentication code	UF-CMA : Hard to forge $MAC(k, M')$, even when seeing $MAC(k, M_1)$, $MAC(k, M_2)$, \cdots

Q: How to achieve both goals at once?

- Encrypt-and-MAC
 - used in SSH

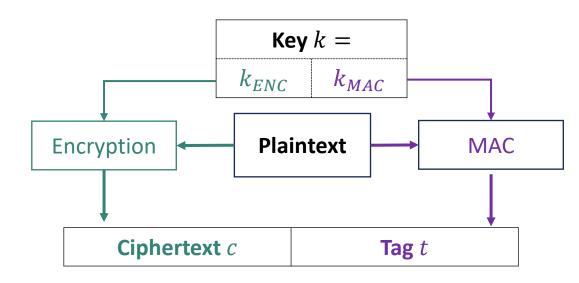


Privacy?

Adversaries can detect resent messages because MAC is deterministic

Encrypt-and-MAC

- used in SSH
- not secure per se (SSH uses modifications)



Integrity?

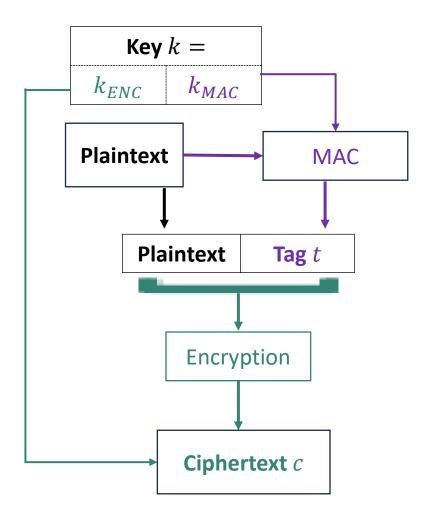
Not necessarily: may be able to tweak c into c' in a way that its decryption is still the same. Then t is still valid!

- Encrypt-and-MAC
 - used in SSH
 - not secure per se (SSH uses modifications)
- MAC-then-Encrypt
 - used in TLS 1.2

Privacy?

If encryption is IND-CPA secure,

- resent messages are unnoticeable (despite MAC)
- the MAC-then-encrypt construction is also IND-CPA secure



Encrypt-and-MAC

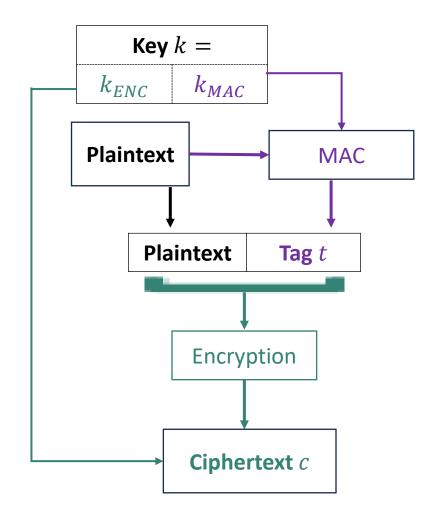
- used in SSH
- not secure per se (SSH uses modifications)

MAC-then-Encrypt

- used in TLS 1.2
- not secure per se, but can be if done right

Integrity?

Same problem as before!



Encrypt-and-MAC

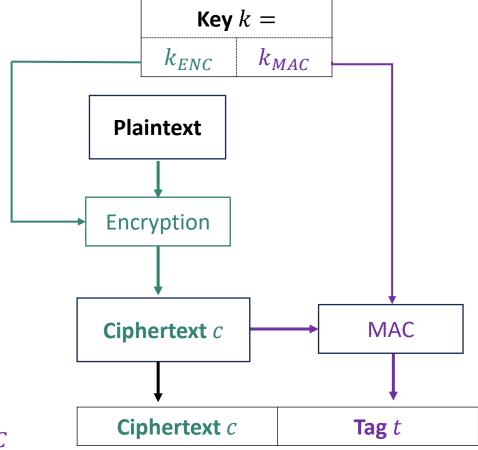
- used in SSH
- not secure per se (SSH uses modifications)

MAC-then-Encrypt

- used in TLS 1.2
- not secure per se, but can be if done right

Encrypt-then-MAC

- used in IPSec
- Privacy: IND-CPA if Encryption is IND-CPA
- Integrity: no computing right t^\prime for c^\prime without k_{MAC}



Proof sketch: Encrypt-then-MAC is IND-CPA

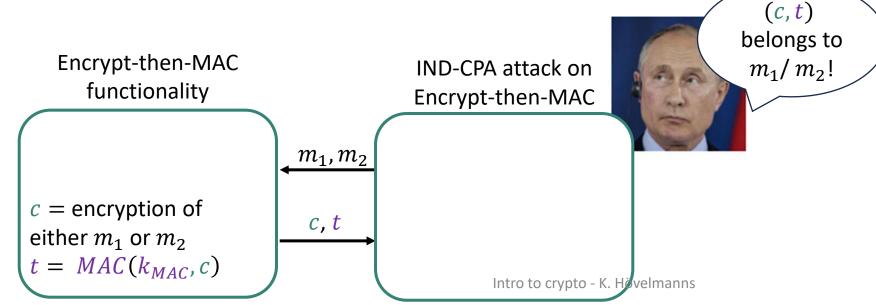
Want to show: if *Encrypt* is IND-CPA secure, then so is Encrypt-then-MAC.

Encrypt-then-MAC $(k_{ENC}, k_{MAC}, m) = (c, t)$ with $c = Encrypt(k_{ENC}, m)$ and $t = MAC(k_{MAC}, c)$

Tool: Turn attack on Encrypt-then-MAC into attack on *Encrypt* ('security reduction'):

• Show: Successful attack on Encrypt-then-MAC gives successful attack on Encrypt

But Encrypt is secure. So no successful attack on Encrypt-then-MAC can exist!



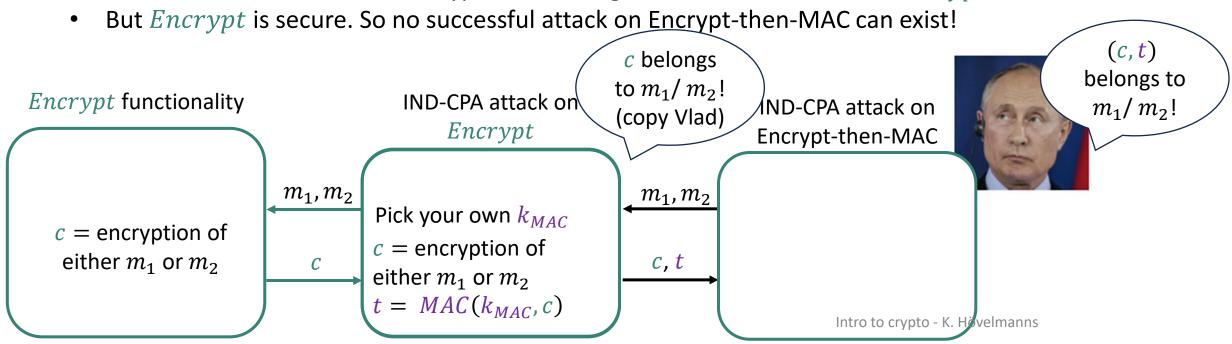
Proof sketch: Encrypt-then-MAC is IND-CPA

Want to show: if *Encrypt* is IND-CPA secure, then so is Encrypt-then-MAC.

Encrypt-then-MAC $(k_{ENC}, k_{MAC}, m) = (c, t)$ with $c = Encrypt(k_{ENC}, m)$ and $t = MAC(k_{MAC}, c)$

Tool: Turn attack on Encrypt-then-MAC into attack on *Encrypt* ('security reduction'):

• Show: Successful attack on Encrypt-then-MAC gives successful attack on Encrypt



How to share a secret key?

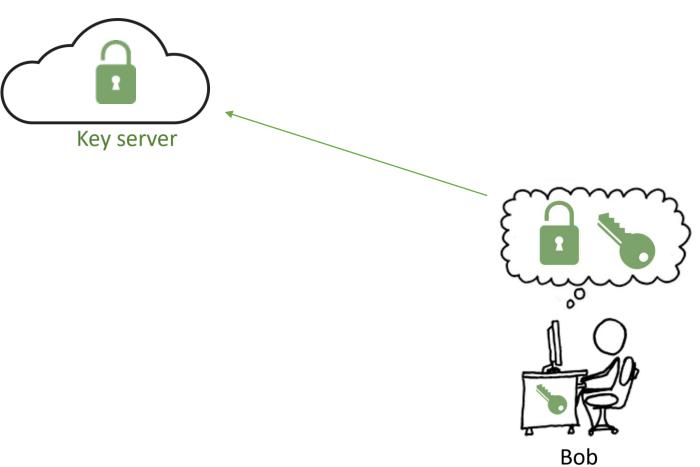
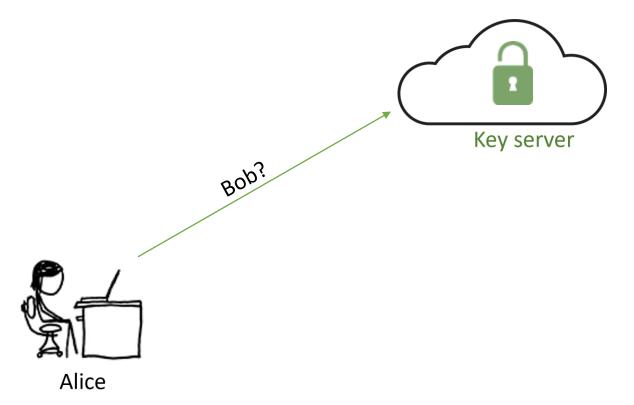


Image source: xkcd.com

Intro to crypto - K. Hövelmanns



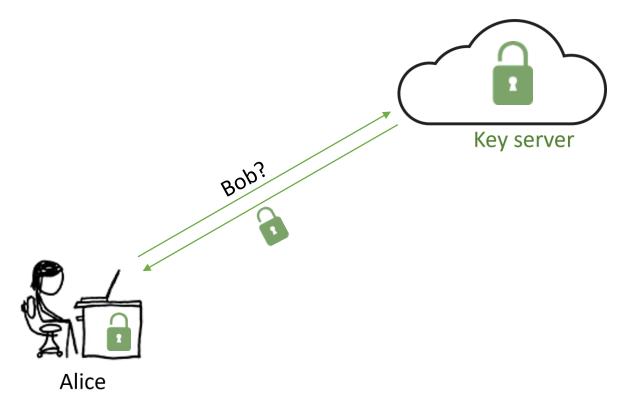
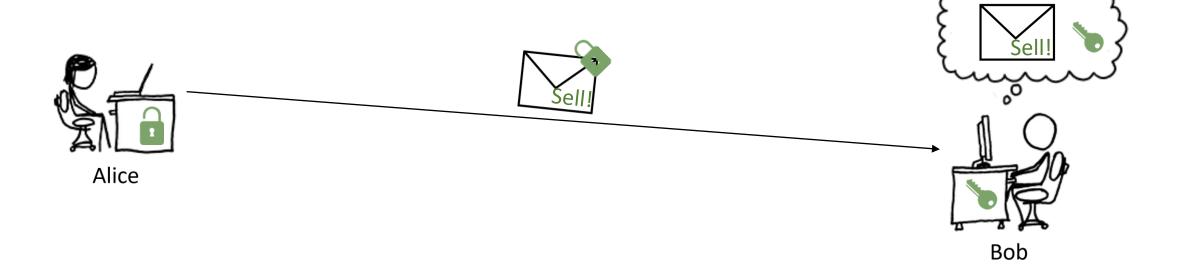
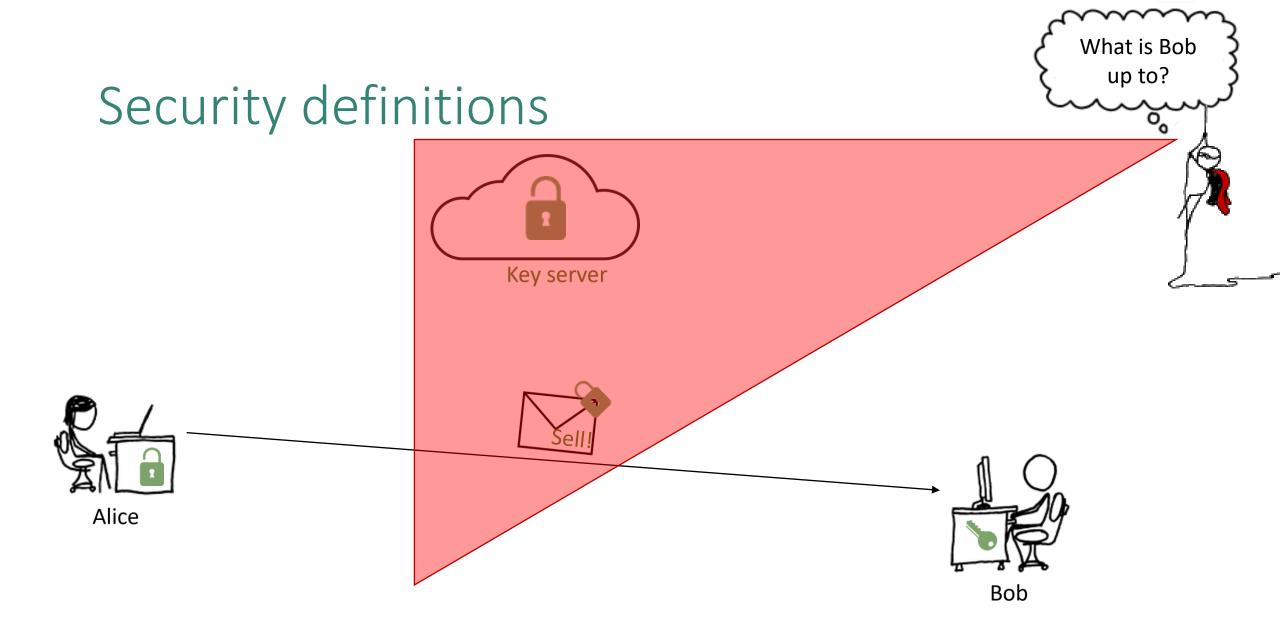


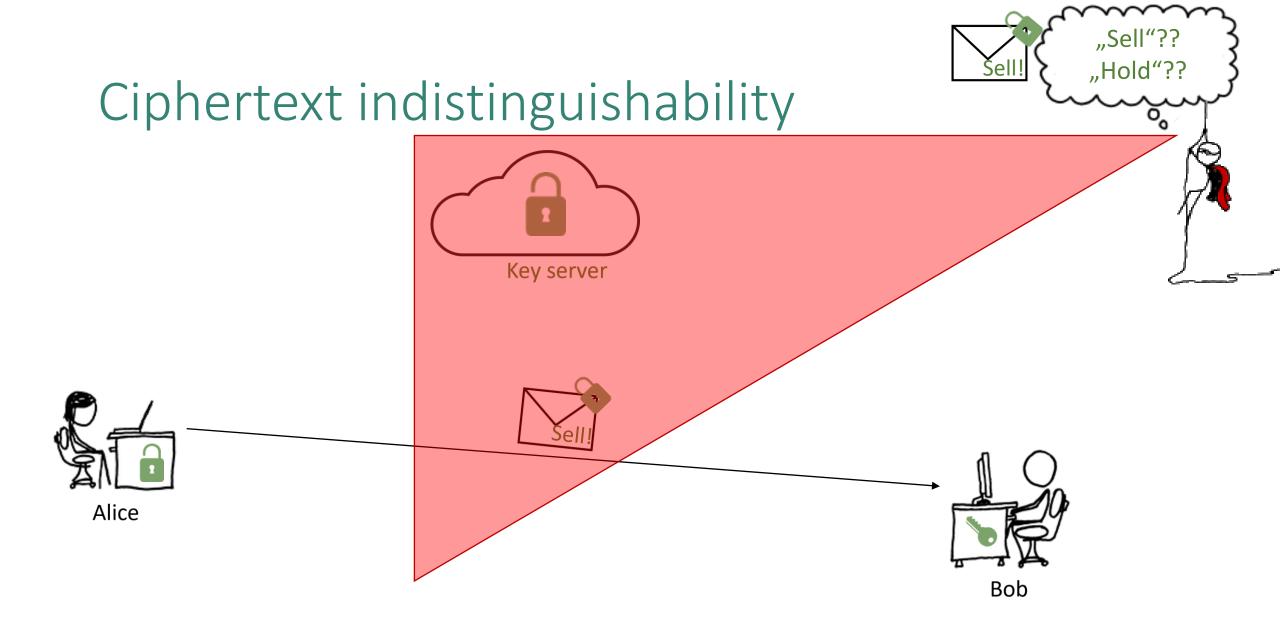
Image source: xkcd.com

Intro to crypto - K. Hövelmanns



Security definitions





Indistinguishability under **c**hosen-**p**laintext **a**ttacks = public key version of symmetric-key IND-CPA:

Left game	Right game			
Adversary gets public key				
Adversary picks two messages m1 and m2				
Adversary gets encryption of:				
m1	m2			
Adversary guesses which game it's playing				

Question: Can we have IND-CPA security if encryption is deterministic*?

* = encrypting a message m always gives the same result

Indistinguishability under **c**hosen-**p**laintext **a**ttacks = public key version of symmetric-key IND-CPA:

Left game	Right game			
Adversary gets public key				
Adversary picks two messages m1 and m2				
Adversary gets encryption of:				
m1	m2			
Adversary guesses which game it's playing				

Question: Can we have IND-CPA security if encryption is deterministic*?

No, but encryption could still be hard to invert.

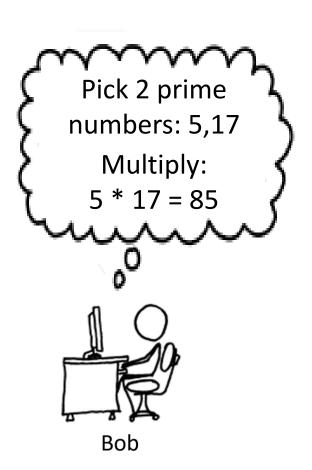
* = encrypting a message m always gives the same result

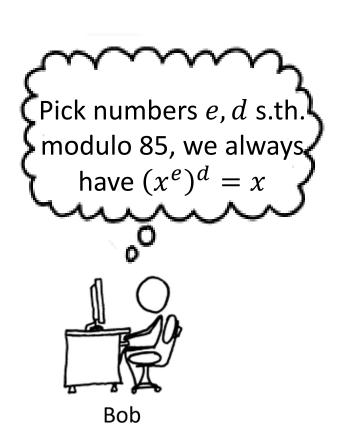
How could Alice encrypt ,sell'?

RSA: computations with primes!

Schoolbook RSA = simplification of PKCS#1, the PKE scheme used in TLS's predecessor.









Example:

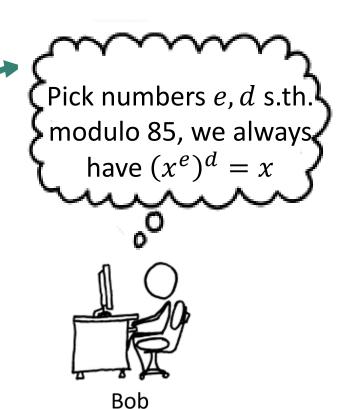
$$e = 5, d = 13$$

$$x = 2$$

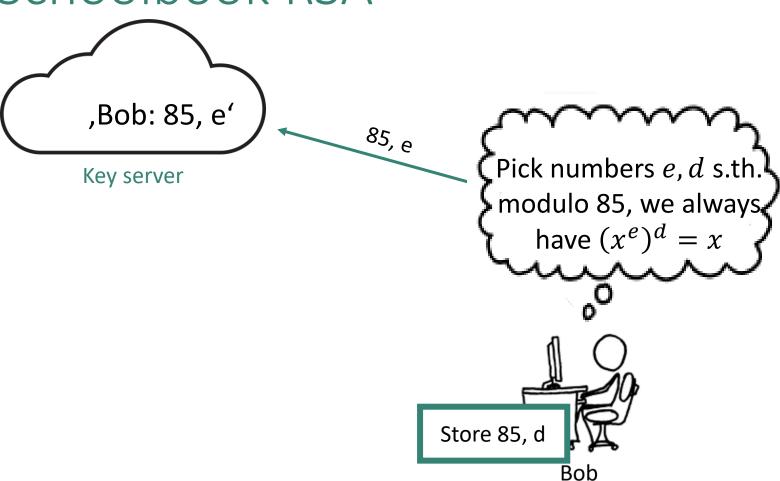
$$x^e = 2^5 = 32$$

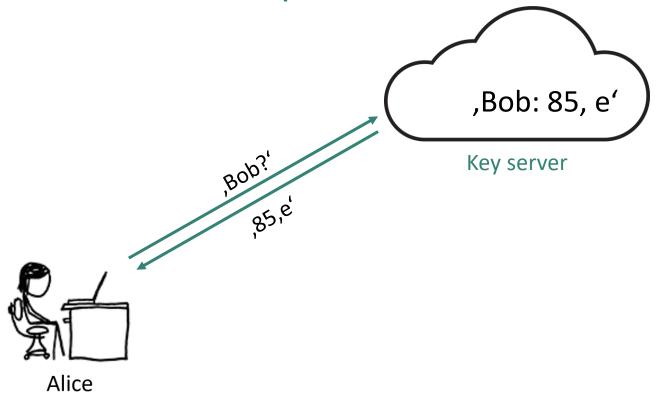
 $(2^e)^d = 32^{13}$ (large, but has remainder 2!)

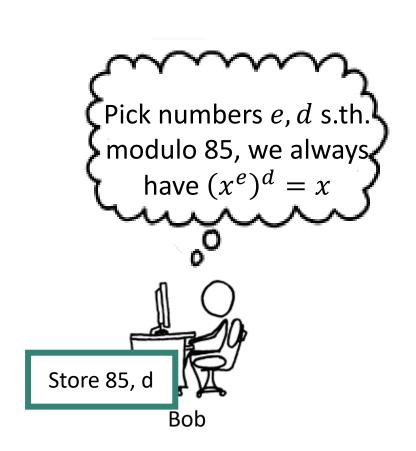
Also works for x = 3, x = 4, x = 5, ...

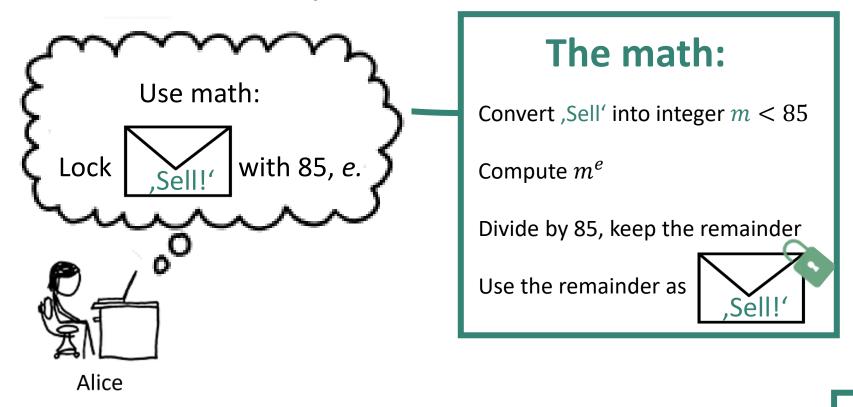


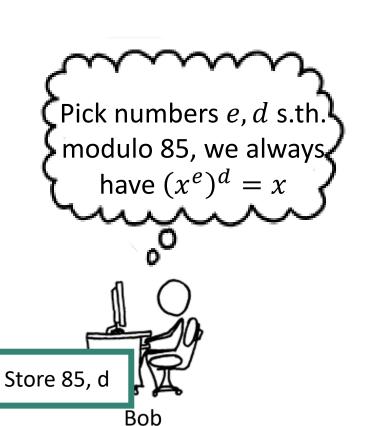
Alice

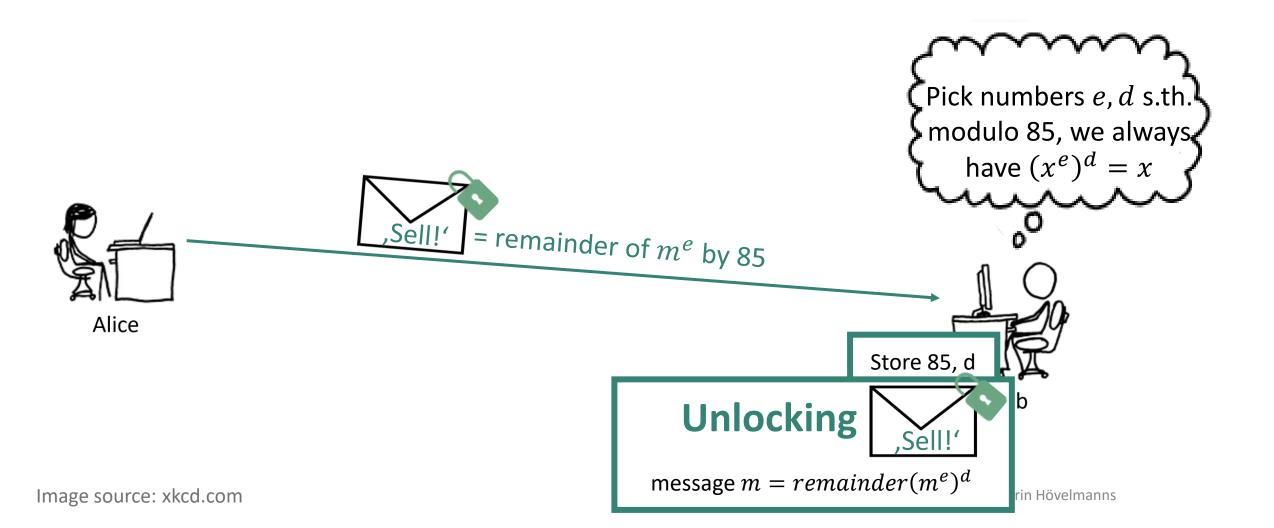












Security intuition: RSA = trapdoor permutation

Like on the previous slides, we take

- as modulus N a prime product.
- e, d s.th. dividing $(x^e)^d$ by N always has remainder x.

RSA_e:
$$\{1, 2, 3, \dots, N - 1\} \to \{1, 2, 3, \dots, N - 1\}$$

 $x \mapsto x^e \mod N$

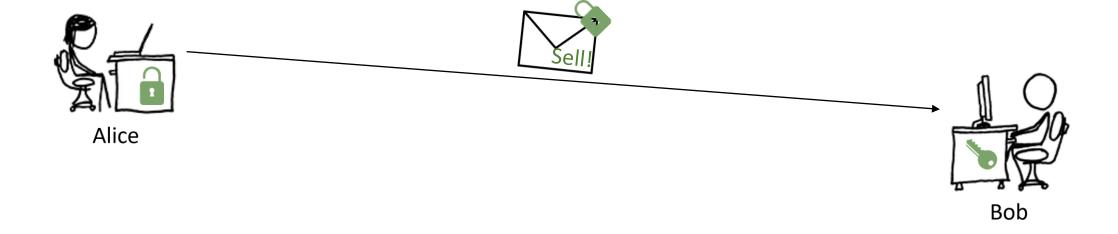
By choice of e and d, RSA_e is a permutation

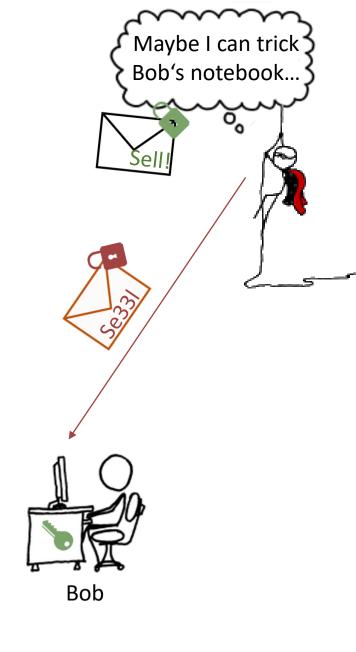
So-called **trapdoor one-way** permutation: Computing x^e is easy, inverting is

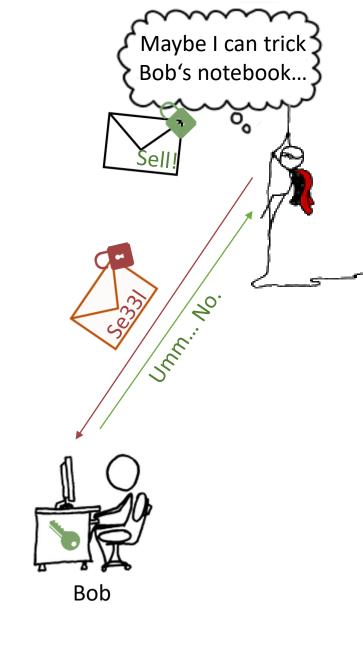
- believed to be hard given only N and e (public key) \leftarrow if we chose the parameters appropriately (!)
- easy given trapdoor d (the secret key)

 \triangle RSA_e may be hard to invert, but is deterministic \rightarrow no IND-CPA security!

⚠ In practice, we need appropriate padding.





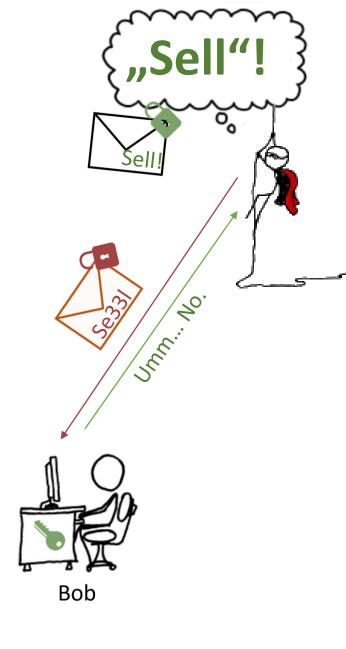


Chosen Ciphertext Attacks Against Protocols Based on the RSA Encryption Standard PKCS #1

Daniel Bleichenbacher

Bell Laboratories
700 Mountain Ave.
Murray Hill, NJ 07974
E-mail: bleichen@research.bell-labs.com

[Bleichenbacher 98]



Like IND-CPA:

Left game	Right game	
Adversary gets public key		
Adversary picks two messages m1 and m2		
Adversary gets encryption of:		
m1	m2	
Adversary guesses which game it's playing		

Difference to IND-CPA: Adversary can additionally request decryptions for any ciphertext is chooses...

Wait, can't this always be won?

Image source: xkcd.com

Intro to crypto - K. Hövelmanns

IND-CCA security: Indistinguishability under chosen-ciphertext attacks.

Like IND-CPA:

Left game	Right game	
Adversary gets public key		
Adversary picks two messages m1 and m2		
Adversary gets encryption of:		
m1	m2	
Adversary guesses which game it's playing		

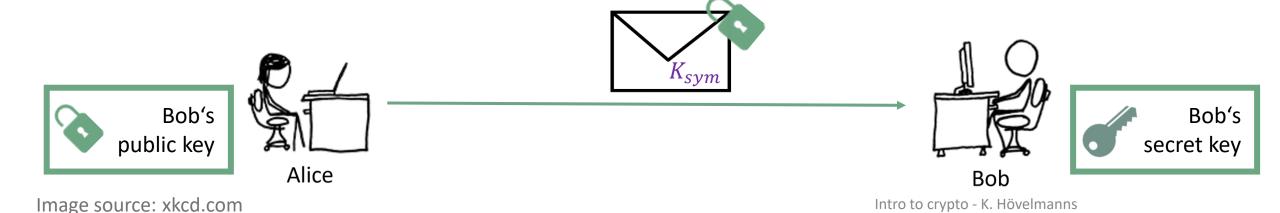
Difference to IND-CPA: Adversary can additionally request decryptions for any ciphertext is chooses... except the provided encryption of m1/m2

Back to what we wanted

Goal: Find a public-key method to securely establish symmetric keys K_{sym} .

(Why not just use PKE to send encrypted messages? Efficiency.)

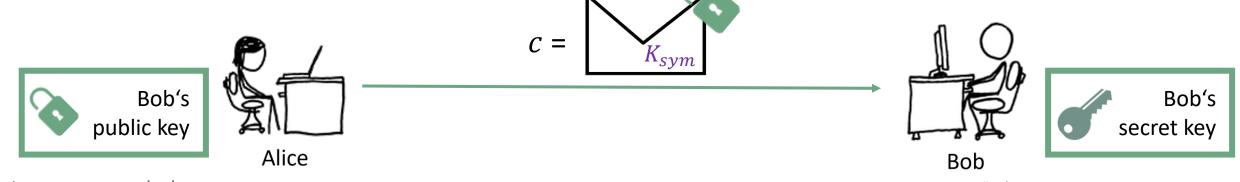
This is called a Key Encapsulation Mechanism (KEM).



Key Encapsulation Mechanisms (KEMs)

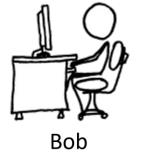
A KEM consists of 3 Algorithms:

- 1. KeyGen: Outputs a public/secret key pair (pk, sk)
- 2. Encapsulate(pk): Uses pk to create K_{sym} and a ciphertext c
- 3. Decapsulate(sk, c): Uses sk to recreate K_{sym} from c



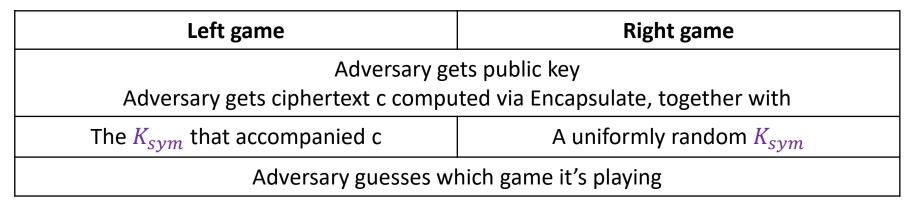
KEMs: Security definition

A ciphertext c shouldn't leak substantial information about K_{sym} .



Indistinguishability game for KEMs

IND-CPA-KEM security: Indistinguishability for KEMs.

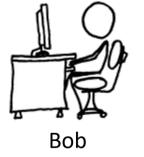


KEMs in practice: NIST 'competition'

Shared approach: PKE from hardness assumption + Fujisaki-Okamoto 'recipe'

Fujisaki-Okamoto (FO):

- 'generic' encryption-to-key-encapsulation recipe



Fujisaki-Okamoto KEMs: initial idea

Goal: Find a way to establish symmetric keys K_{sym} , securely.

You may use a public-key encryption scheme.

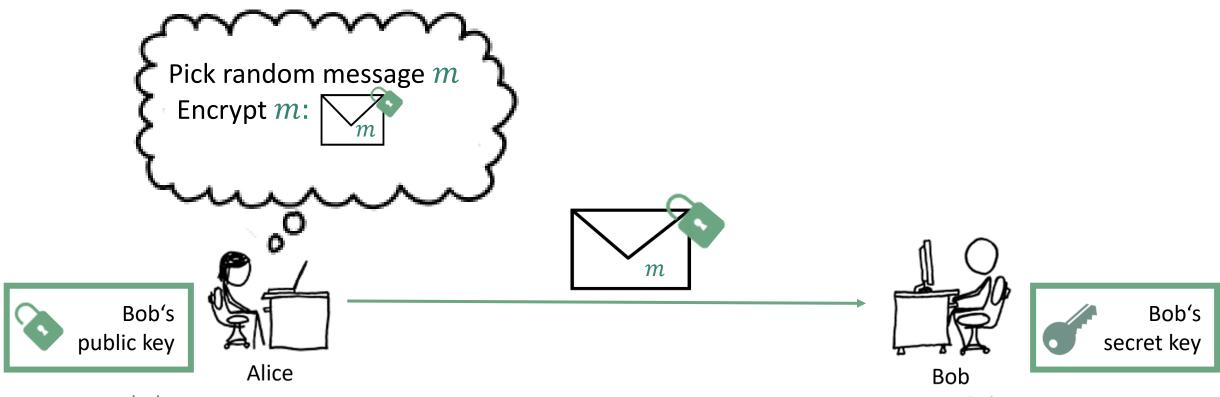
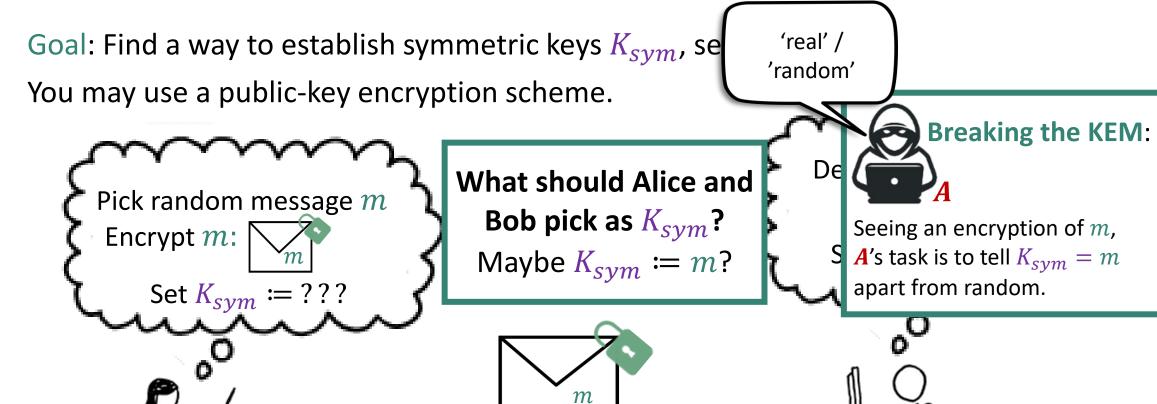
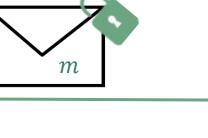


Image source: xkcd.com

Intro to crypto - K. Hövelmanns

Fujisaki-Okamoto KEMs: initial idea





Fujisaki-Okamoto KEMs: initial idea

Goal: Find a way to establish symmetric keys K_{sym} , securely.

You may use a public-key encryption scheme and a hash function.

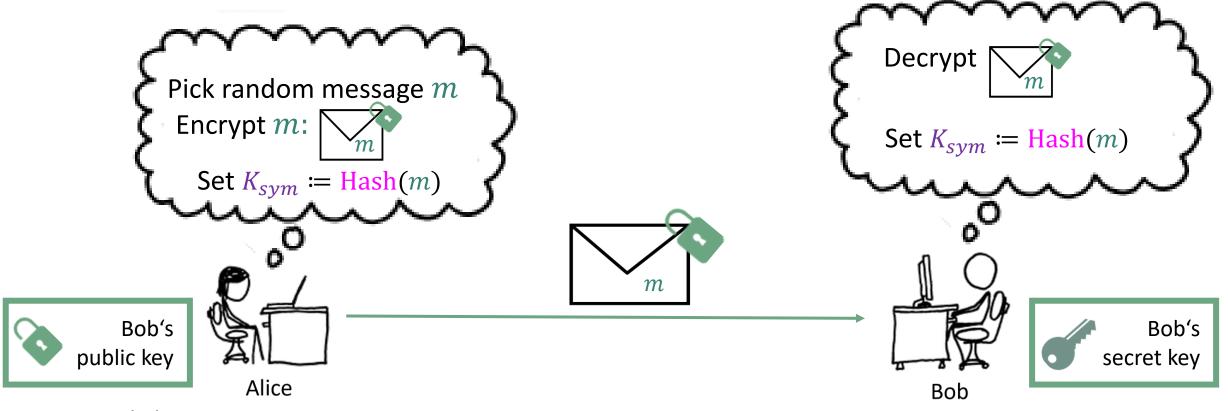
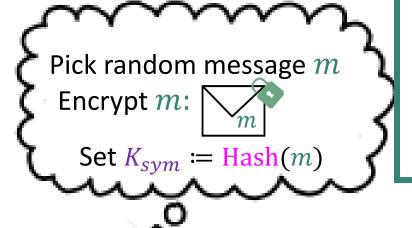


Image source: xkcd.com

Intro to crypto - K. Hövelmanns

Fujisaki-Okamoto K

Goal: Find a way to establish syn You may use a public-key encryp



Q: Is this secure?

'real' /
'random'

Proof heuristic:

<u>Assume</u> (!) <u>Hash</u> outputs are unpredictable + unrelated

 \rightarrow *A* has 0 chance distinguishing without computing $\operatorname{Hash}(m)$ itself

... for which it needs to know *m*

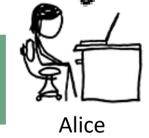
... meaning it inverted encryption!

Breaking the KEM:

Seeing an encryption of m, A's task is to tell $K_{sym} =$

Hash(m) apart from random.

Bob's public key



Security against chosen-ciphertext attacks

Goal: Find a way to establish symmetric keys K_{sym} with chosen-ciphertext security.

→ attacker allowed to **request decapsulation for any ciphertext.**

Only high-level: slightly alter how the KEM en-/decapsulates:

Altered decapsulation will

- detect malicious ciphertexts
- punish those by rejecting to return a meaningful key.
- → hard for attacker to request <u>useful</u> decapsulations

It is still being researched today which altering strategy works best!

Take-aways

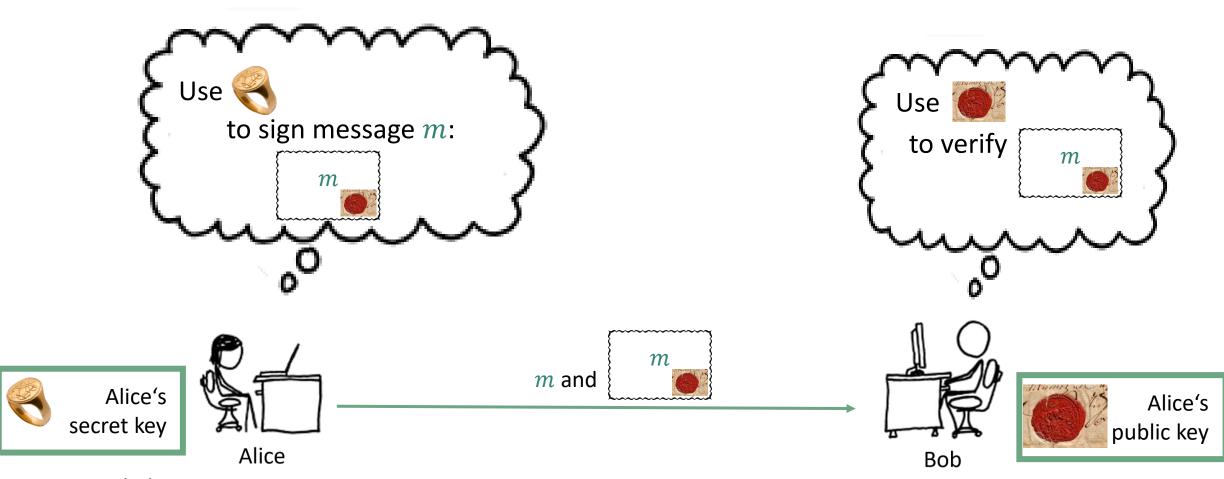
PKEs give us privacy (without secret meetings), KEMs make this more efficient.

We have a 'cooking recipe' for turning PKE into a KEM (called Fujisaki-Okamoto).

We used a ,lego' approach very common in crypto:

Q: how can we guarantee data authenticity/integrity?

Digital signatures – a bit like MACs:

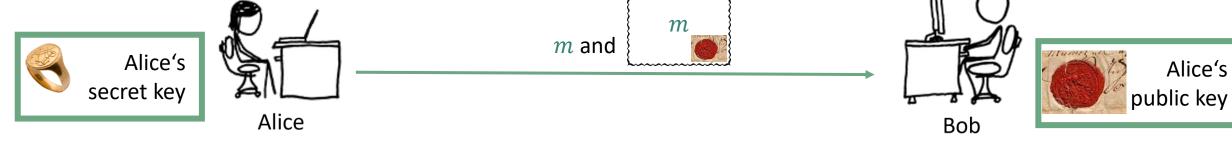


Digital signatures: security goals

Security goal = UnForgeability: Computing a valid signature without knowing secret key sk is hard.

(Attackers will know the public key, though.)

• UF against Chosen Message Attacks (UF-CMA): even given the power to request signatures on chosen messages m_i , a valid signature for a new message $m' \neq m_i$ is hard to produce.



Digital signatures – a bit like MACs, but not fully:

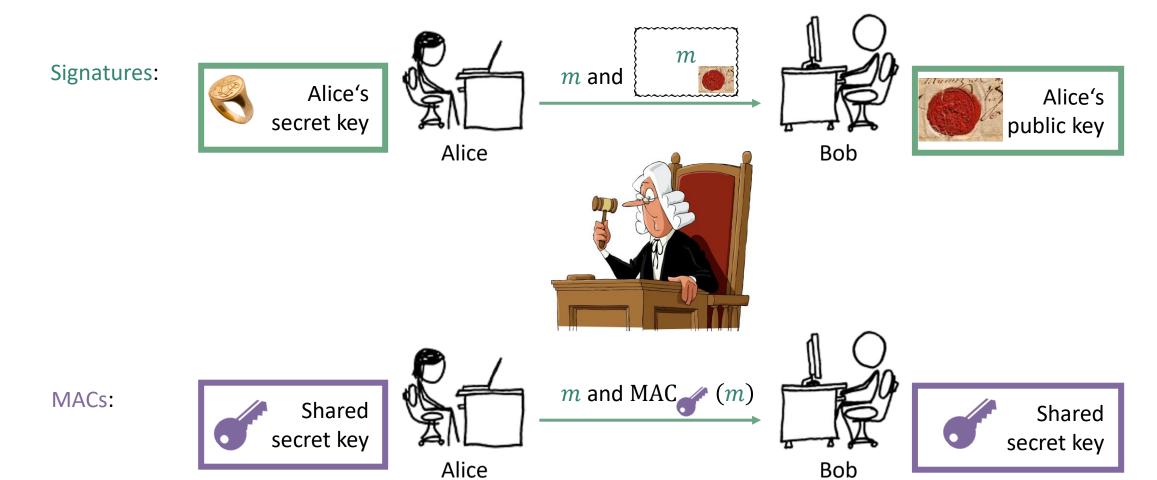


Image source: xkcd.com

Intro to crypto - K. Hövelmanns

Schoolbook RSA signatures

Remember RSA function: We take

- as modulus N a prime product.
- e, d s.th. dividing $(x^e)^d$ by N always has remainder $x \to RSA_e$ is a permutation:

$$RSA_e: \{1, 2, 3, \dots, N-1\} \to \{1, 2, 3, \dots, N-1\}$$

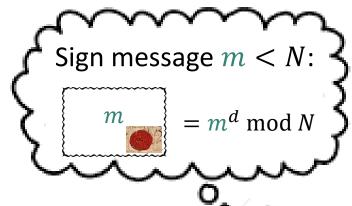
 $x \mapsto x^e \mod N$

Like before, we set: public key =(N,e), secret key =d:

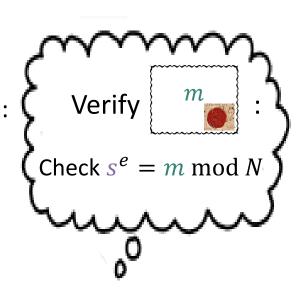
Schoolbook RSA signatures

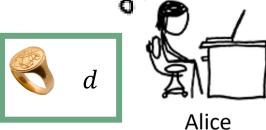
Remember RSA function: We take

- as modulus N a prime product.
- e, d s.th. dividing $(x^e)^d$ by N always has remainder $x \to RSA_e$ is a permutation:



$$RSA_e: \{1, 2, 3, \dots, N-1\} \rightarrow \{1, 2, 3, \dots, N-1\}$$
$$x \mapsto x^e \bmod N$$

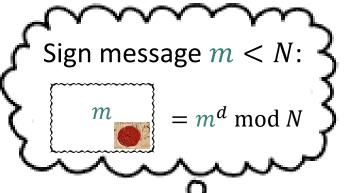




$$m$$
 and $s = \begin{bmatrix} m \\ m \end{bmatrix}$

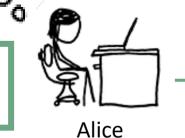
Q: Is this secure?

Can Mr. Krabs - only knowing the public key N, e, but not d – sign a message such that Bob accepts the signature?)



d

$$RSA_e: \{1, 2, 3, \dots, N-1\} \rightarrow \{1, 2, 3, \dots, N-1\}$$
$$x \mapsto x^e \bmod N$$



$$m$$
 and $s = \begin{bmatrix} m \\ 0 \end{bmatrix}$

Verify

 $\mathsf{Check}\, s^e = m \, \mathsf{mod}\, N$

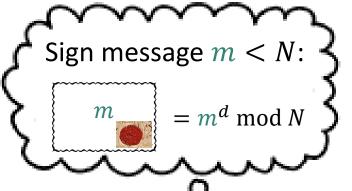
Q: Is this secure?

Can Mr. Krabs - only knowing the public key N, e, but not d – sign a message such that Bob accepts the signature?)

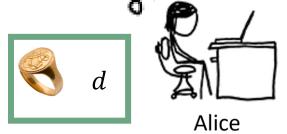
Key-only forgery: Pick arbitrary 'signature' s, set $m = s^e \mod N$

 \rightarrow s is a valid signature for m that will be accepted by Bob!

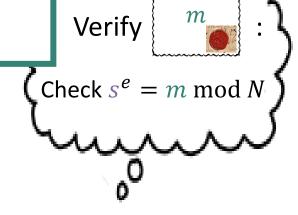
In practice, however, m might look unconvincing to the recipient.



$$RSA_e: \{1, 2, 3, \dots, N-1\} \rightarrow \{1, 2, 3, \dots, N-1\}$$
$$x \mapsto x^e \bmod N$$



$$m$$
 and $s = \begin{bmatrix} m \\ m \end{bmatrix}$



Q: Is this secure?

Can Mr. Krabs - only knowing the public key N, e, but not d - sign a message such that Bob accepts the signature?)

Targetted forgery via signature requests: Choose target message m^* .

We'll exploit the multiplicative property of the RSA function ('verification preserves multiplication'):

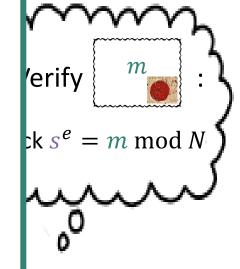
$$(s_1 \cdot s_2)^e = s_1^e \cdot s_2^e \bmod N$$

Attack:

- Pick arbitrary message m_1 , and m_1^{-1} such that $m_1 m_1^{-1} \bmod N = 1$.
- Request signature s_1 for m_1 : you get $s_1 = m_1^d$ and signature s_2 for $m_2 = m_1^{-1} \cdot m^*$: you get $s_2 = m_2^d$

Sign m^* with $s^* = s_1 \cdot s_2 \to \text{Bob accepts since } (s^*)^e = m^* \mod N$:

$$(s^*)^e = s_1^e \cdot s_2^e = m_1 \cdot m_2 = m_1 \cdot m_1^{-1} \cdot m^* = m^* \mod N$$



Alice

Bob

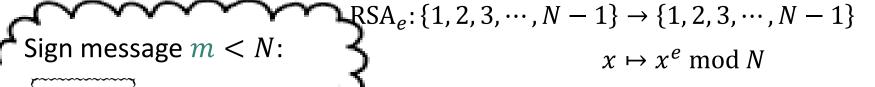
Q: Can we tweak this so it becomes secure?

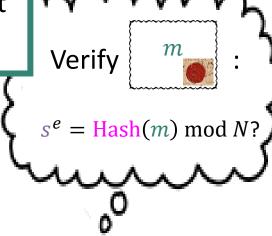
Idea: Pick hash function Hash: $\{0,1\}^* \to \{1,2,3,\cdots,N-1\}$, sign messages $m \in \{0,1\}^*$ by applying RSA signature approach to Hash(m).

Advantage 1: We can now sign arbitrary-length messages.

Advantage 2: Targetted attack a lot harder: need to find m, m_1, m_2 such that

 $\operatorname{Hash}(m) = \operatorname{Hash}(m_1) \cdot \operatorname{Hash}(m_2) \bmod N$





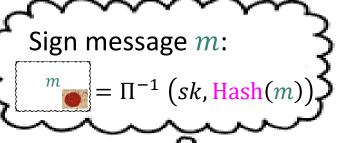
 $= \operatorname{Hash}(m)^d \mod N$

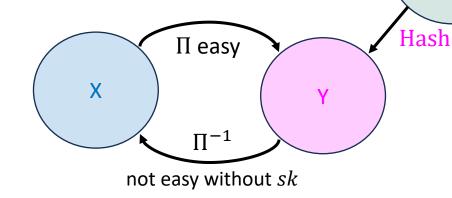
$$m$$
 and $s = \begin{bmatrix} m \\ m \end{bmatrix}$

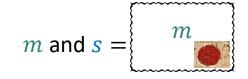
Abstraction of tweak: full domain hash (FDH)

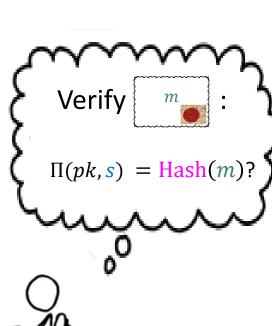
Take trapdoor one-way permutation Π (like the RSA function): computing

- $\Pi(pk, x)$ is easy (e.g., x^e)
- $\Pi^{-1}(sk, y)$ is (e.g., y^d)
 - hard when not knowing sk
 - easy when knowing sk

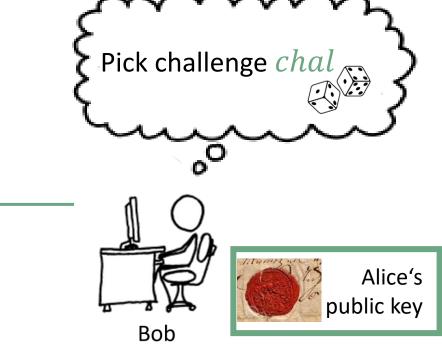




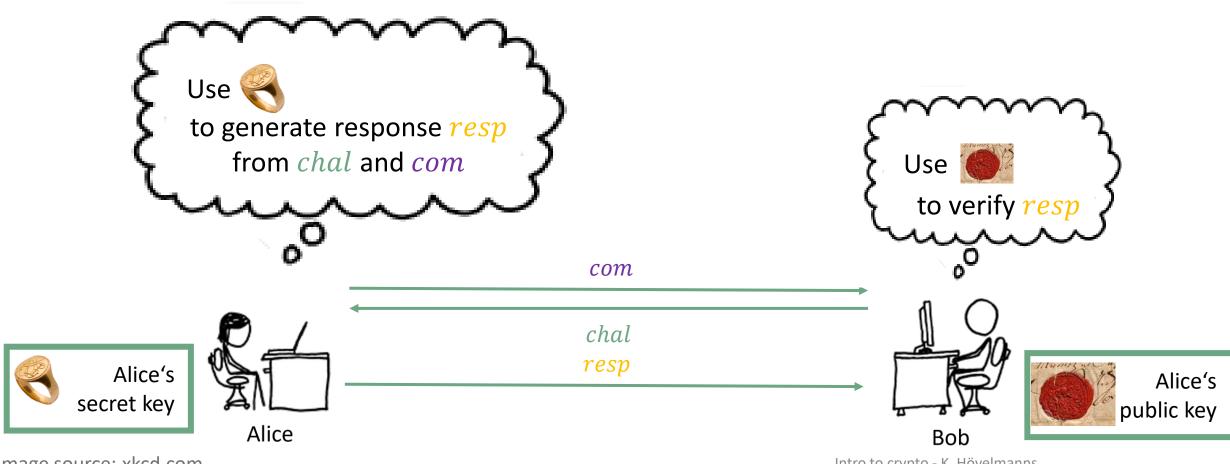


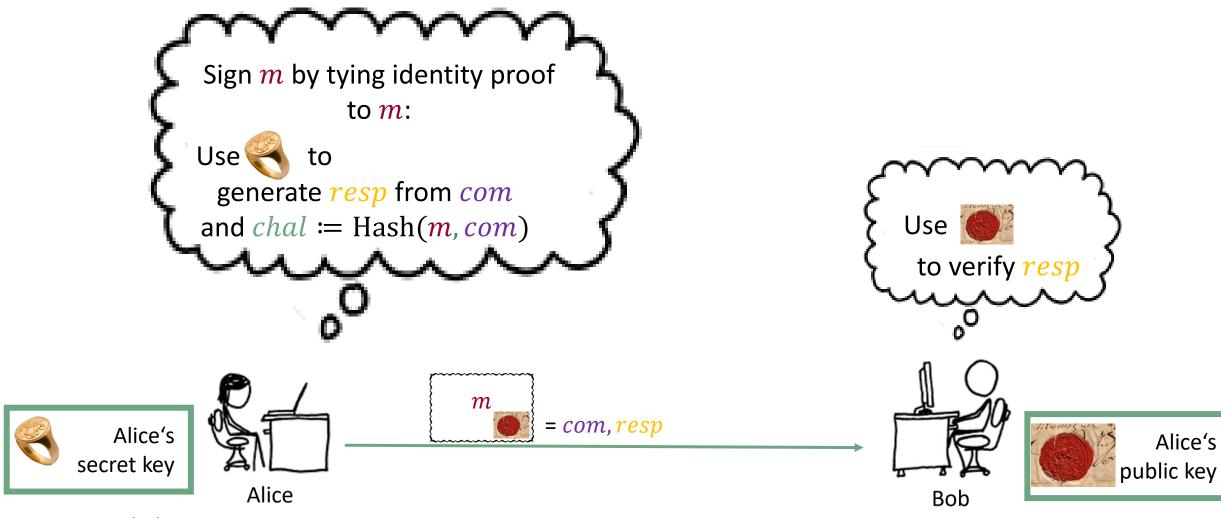


M



chal





Take-aways

We have a 'cooking recipe' for building signatures from a one-way trapdoor function We again used the 'lego' approach:

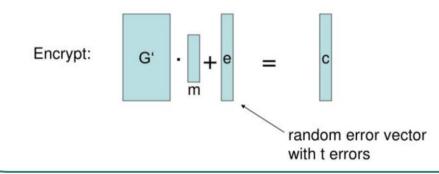
There are also other 'recipes' you will probably encounter during this week All known recipes require some hardness assumption (e.g., 'inverting x^e is hard') Q: how would we prove security against quantum attackers? (next talk)

Post-quantum crypto

RSA Problem that (hopefully) is hard even for quantum computers

Finding a shortest vector in a lattice (Thu)

Decoding error-correcting codes (Wed)



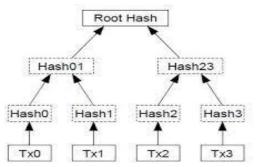
$$1000 x + x^{2} + 423 y^{2}z = 1$$

$$655 y + 53 yz = 13$$

$$29 x + 3 y^{2} + 53 xz^{2} = 4$$

Solving multi-variable polynomial equations (Fri)

Attacking hash functions (Wed)



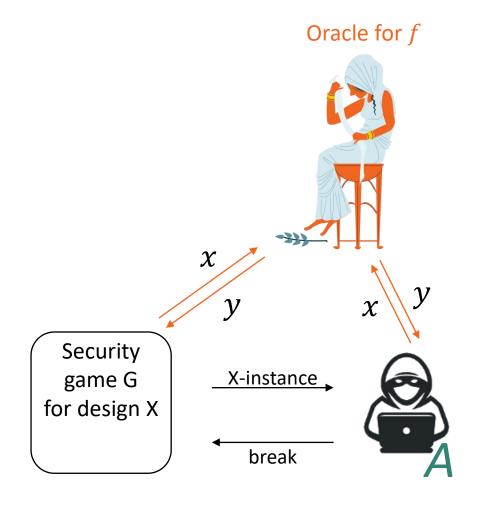
If time permits: random oracle model (ROM)

Heuristic: Replace hash function

Hash: $\{0,1\}^n \to \{0,1\}^m$

with 'oracle box' for truly random

 $f: \{0,1\}^n \to \{0,1\}^m$



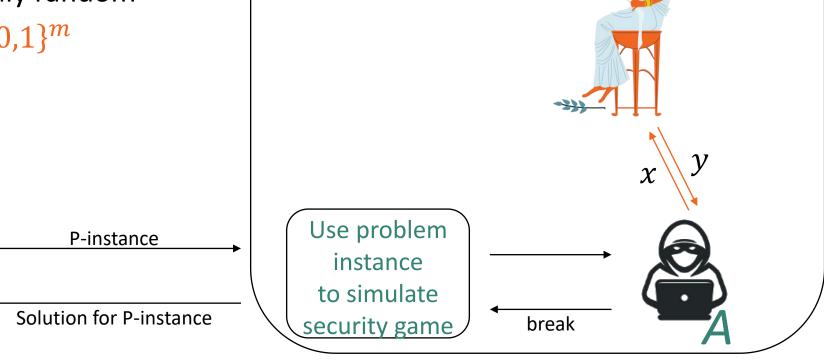
If time permits: random oracle model (ROM)

Heuristic: Replace hash function

Hash: $\{0,1\}^n \to \{0,1\}^m$

with 'oracle box' for truly random

 $f: \{0,1\}^n \to \{0,1\}^m$

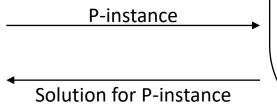


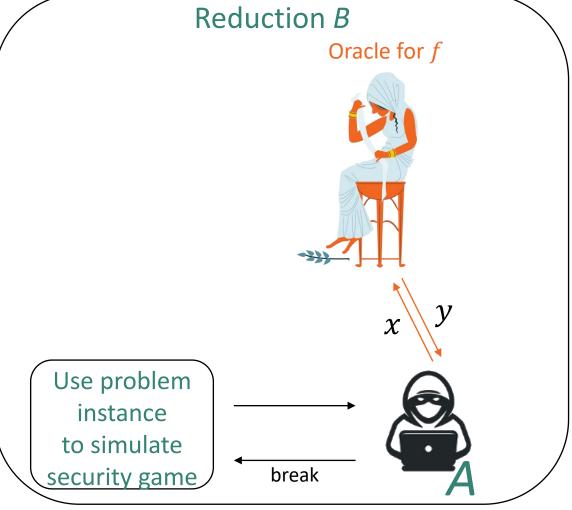
Reduction B

Oracle for *f*

Perks of the random oracle model

- Unpredictability of f(x)
- 'Tricking A': Picking the ys smartly enough, B can
 - a) trick A into solving B's problem
 - b) feign secret knowledge it would in principle need for A's security game

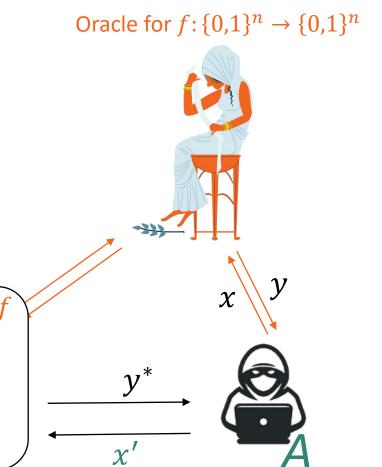




Practice example: ROs as one-way functions

Short DIY break:

Try to reason why it is hard for A to win the one-way game if n is large enough!



One-way game for RO

Pick random x^* Set $y^* := f(x^*)$

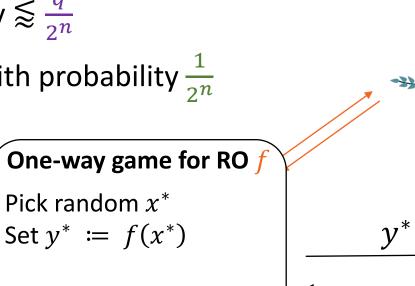
A wins if $f(x') = y^*$

Practice example: ROs as one-way functions

Say A makes q many queries to f

- Per query $x \neq x^*$: f returns y^* with probability $\frac{1}{2^n}$
- A queries f on x^* with probability $\lesssim \frac{q}{2^n}$
- If no query yields y^* : $f(x')=y^*$ with probability $\frac{1}{2^n}$

$$\Pr[A \ wins] \lessapprox \frac{q}{2^n} + \frac{q}{2^n} + \frac{1}{2^n}$$



Oracle for $f: \{0,1\}^n \to \{0,1\}^n$

This heuristic seems weird.

- No theoretical justification
 Counterexamples: designs that are
 - secure in the ROM, but
 - insecure when instantiating RO with any hash function
- © So far: good track record for 'natural' schemes Helps identify design bugs

Skeptical cat

regards

your tale

with

suspicion