
Intro to crypto
PQC Spring School 2024

Kathrin Hövelmanns

March 12th, 2024

Brief history of communicating secrets

Intro to crypto - K. Hövelmanns

700 BC

Scytale

440 BC

Bodymod steganography
(Histiaeus,

acc. to Herodotus)

50 BC

Caesar cipher

Brief history of communicating secrets

Intro to crypto - K. Hövelmanns

700 BC

Scytale

440 BC 50 BC

Caesar cipher

‚Shift by 3‘ rule:

A D

T W

T W

A D

C F

K N

Bodymod steganography
(Histiaeus,

acc. to Herodotus)

Brief history of communicating secrets

Intro to crypto - K. Hövelmanns

700 BC

Scytale

440 BC 50 BC

Caesar cipher

‚Shift by 3‘ rule:

A D

T W

T W

A D

C F

K N

D A

W T

W T

D A

F C

N K

Bodymod steganography
(Histiaeus,

acc. to Herodotus)

Brief history of communicating secrets

Intro to crypto - K. Hövelmanns

700 BC

Scytale

440 BC 50 BC

Caesar cipher

Problem:

Techniques will never
remain secret.Bodymod steganography

(Histiaeus,
acc. to Herodotus)

Brief history of communicating secrets

Intro to crypto - K. Hövelmanns

700 BC

Scytale

440 BC 50 BC

Caesar cipher

Take-away 1:

Don’t hope that secret
techniques will remain

secret – they won’t.

‘It should not be a
problem if [the

system] falls into
enemy hands.’

Kerckhoffs, 1883

Bodymod steganography
(Histiaeus,

acc. to Herodotus)

Brief history of communicating secrets

Intro to crypto - K. Hövelmanns

700 BC

Scytale

440 BC

Bodymod steganography
(Herodotus)

50 BC

Caesar cipher

… not too much going on here …

829 × 843

‚Caesar with codeword‘:

Codeword:
CRYPTO

A A -> C C

T A -> R K

T A -> Y R

A A -> P P

C A -> T V

K A -> O Y
Vigenère

1500 AD

https://www.google.com/url?sa=i&url=https%3A%2F%2Flehrerfortbildung-bw.de%2Fu_matnatech%2Finformatik%2Fgym%2Fbp2016%2Ffb1%2F3_rechner_netze%2F1_hintergrund%2F9_krypto%2F5_vignere%2F&psig=AOvVaw2Lu_hFnbtPxQYDB4XK6TL7&ust=1669840331816000&source=images&cd=vfe&ved=0CBAQjRxqFwoTCMiNpJCe1PsCFQAAAAAdAAAAABAE

Brief history of communicating secrets

Intro to crypto - K. Hövelmanns

700 BC

Scytale

440 BC

Bodymod steganography
(Herodotus)

50 BC

Caesar cipher

… not too much going on here …

829 × 843

‚Caesar with codeword‘:

Codeword:
CRYPTO

A A -> C C

T A -> R K

T A -> Y R

A A -> P P

C A -> T V

K A -> O Y

No codeword ->
no info

Vigenère

1500 AD

https://www.google.com/url?sa=i&url=https%3A%2F%2Flehrerfortbildung-bw.de%2Fu_matnatech%2Finformatik%2Fgym%2Fbp2016%2Ffb1%2F3_rechner_netze%2F1_hintergrund%2F9_krypto%2F5_vignere%2F&psig=AOvVaw2Lu_hFnbtPxQYDB4XK6TL7&ust=1669840331816000&source=images&cd=vfe&ved=0CBAQjRxqFwoTCMiNpJCe1PsCFQAAAAAdAAAAABAE

No codeword ->
no info

Brief history of communicating secrets

Intro to crypto - K. Hövelmanns

700 BC

Scytale

440 BC

Bodymod steganography
(Herodotus)

50 BC

Caesar cipher

… not too much going on here …

829 × 843

‚Caesar with codeword‘:

Codeword:
CRYPTO

A A -> C C

T A -> R K

T A -> Y R

A A -> P P

C A -> T V

K A -> O Y
Vigenère

1500 AD

Tried
Statistics?

Babbage
1854

Kasiski
1863

https://www.google.com/url?sa=i&url=https%3A%2F%2Flehrerfortbildung-bw.de%2Fu_matnatech%2Finformatik%2Fgym%2Fbp2016%2Ffb1%2F3_rechner_netze%2F1_hintergrund%2F9_krypto%2F5_vignere%2F&psig=AOvVaw2Lu_hFnbtPxQYDB4XK6TL7&ust=1669840331816000&source=images&cd=vfe&ved=0CBAQjRxqFwoTCMiNpJCe1PsCFQAAAAAdAAAAABAE

Bodymod steganography
(Histiaeus,

acc. to Herodotus)
Vigenère

Brief history of communicating secrets

Intro to crypto - K. Hövelmanns

1500 AD 1930 AD

Enigma

700 BC

Scytale

440 BC 50 BC

Caesar cipher

… not too much going on here …

Beware hubris.

You don’t find attacks on how you communicate?

Doesn’t mean no one else does!

Did you use any cryptography today?

Amazon uses https, https invokes the TLS protocol

TLS uses cryptography

TLS is actually quite ubiquitous:

 shopping, banking, Netflix, gmail, Facebook (yes, I’m old), ...

Intro to crypto - K. Hövelmanns

Did you use any cryptography today?

Secure instant messaging:

How many apps do you use?

Intro to crypto - K. Hövelmanns

What do we want from cryptography?

Intro to crypto - K. Hövelmanns

Privacy:
Keeping secrets secret.

Integrity + authenticity:
Ensure that message really came from

declared sender + arrived unaltered

Secret-key encryption

Intro to crypto - K. Hövelmanns

𝐸𝑛𝑐𝑟𝑦𝑝𝑡 takes plaintext and key,

and produces ciphertext

𝐷𝑒𝑐𝑟𝑦𝑝𝑡 takes ciphertext and key,
and produces plaintext

Goal #1: Confidentiality despite espionage (prerequisite: adversary does not know key)

One-time pad

Intro to crypto - K. Hövelmanns

Key 𝐾 is picked uniformly random from ℓ -bit strings: 𝐾 ← {0,1}ℓ

Plain- and ciphertexts are also ℓ -bit strings: 𝑚, 𝑐 ∈ {0,1}ℓ

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝐾 𝑚 = 𝐾 ⊕ 𝑚: add 𝐾 and 𝑚, modulo 2 in each position

𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝐾 𝑐 = 𝐾 ⊕ 𝑐

This works: 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝐾 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝐾 𝑚 = 𝐾 ⊕ 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝐾 𝑚 = 𝐾 ⊕ 𝐾 ⊕ 𝑚 = 𝑚

e.g., 01 ⊕ 11 = 0 + 1 𝑚𝑜𝑑 2 1 + 1 𝑚𝑜𝑑 2 = 10

mod 2 = divide by 2, take remainder

Perfect security

Intro to crypto - K. Hövelmanns

Pr 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝐾 𝑚1 = 𝑐 = Pr 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝐾 𝑚2 = 𝑐

𝒎𝟏??
𝒎𝟐??

Formally: (KeyGen, Encrypt, Decrypt) perfectly secure iff

for all plaintexts 𝑚1, 𝑚2 and all ciphertexts 𝑐:

Probability taken over the choice of key 𝐾

Important fact (Shannon): only possible if there are as many keys as
there are potential messages

One-time pad is perfectly secure

Intro to crypto - K. Hövelmanns

One-time pad: 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝐾 𝑚 = 𝐾 ⊕ 𝑚, 𝐾 chosen randomly

Suppose adversary

• gets 𝑐 = 01

• knows: 𝑚 is either 𝑚1= 11 or 𝑚2= 01

• but doesn’t know 𝐾

Can it tell which message 𝑚 was?

No: could be 𝑚1= 11 (if 𝐾= 10) or 𝑚2= 01 (if 𝐾= 00)

both equally likely!

One-time pad is perfectly secure… if used once

Intro to crypto - K. Hövelmanns

One-time pad: 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝐾 𝑚 = 𝐾 ⊕ 𝑚, 𝐾 chosen randomly

Suppose

• adversary sees first encryption: 𝑐1 = 01

• but now also 𝒄𝟐 = 𝒄𝟏 = 01

→ Adversary learns that same message was sent twice

Computational security

Intro to crypto - K. Hövelmanns

We want to encrypt

• arbitrary amounts of data

• with a single, short key

→ perfectly secure symmetric-key encryption infeasible in practice

Computational security (‘IND-CPA’) as relaxation of security goal:

Telling 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝐾 𝑚1 from 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝐾 𝑚2 should be

• computationally infeasible (INDistinguishability),

• even if you chose 𝑚1 and 𝑚2 yourself (Chosen Plaintext Attack).

Permutations

Intro to crypto - K. Hövelmanns

A permutation is a mapping Π: 𝑆 → 𝑆 from some set S to itself that is one-to-one.

[Slide based on one by E.Thomé]

In other words: Π has an inverse Π−1: 𝑆 → 𝑆.

Example: S = 𝐴, 𝐵, 𝐶

Block ciphers are families of permutations

Intro to crypto - K. Hövelmanns

Block ciphers = two-input functions

E: 𝐾𝑒𝑦𝑠 × 0,1 ℓ → 0,1 ℓ

so such each key 𝐾 gives us a permutation

𝐸𝐾: 0,1 ℓ → 0,1 ℓ

(so for each key 𝐾, 𝐸𝐾 has an inverse 𝐸𝐾
−1)

(For practice: all functions 𝐸𝐾, 𝐸𝐾
−1 should be efficiently computable)

𝑥 ↦ 𝐸 𝐾, 𝑥

Using block ciphers to encrypt

Intro to crypto - K. Hövelmanns

𝑐

Encrypting 𝑚 = 𝑚1 ⋯ 𝑚ℓ:

𝑐 = Ek 𝑚1 ⋯ Ek(𝑚ℓ) Decrypting 𝑐 = 𝑐1 ⋯ 𝑐ℓ:

𝑚 = Ek
−1 𝑐1 ⋯ Ek

−1(𝑐ℓ)

Security requirement:

𝑐 should leak neither 𝑚 nor 𝑘!

Data Encryption Standard (DES)

Intro to crypto - K. Hövelmanns

1972: NBS (now NIST) aims to standardise a block cipher

1974: IBM designs Lucifer, which evolves into DES

Widely adopted (e.g., used in ATMs)

High-level design:

• Feistel network, made of successive rounds

• Each round = simple operation, using a bit of the secret key

Data Encryption Standard (DES): Feistel round

Intro to crypto - K. Hövelmanns

Swap sides

Split message into left half (𝐿0) and right half (𝑅0)

Apply some nonlinear (key-dependent) function 𝐹 to 𝑅0

to get OTP key for 𝐿0

Image credit: E. Thome

Data Encryption Standard (DES): Feistel round

Intro to crypto - K. Hövelmanns

We can invert easily → this is a permutation!

Swap sides

Split message into left half (𝐿0) and right half (𝑅0)

Apply some nonlinear (key-dependent) function 𝐹 to 𝑅0

to get OTP key for 𝐿0

Image credit: E. Thome

Data Encryption Standard (DES): round chaining

Intro to crypto - K. Hövelmanns

One round looks simple enough

→ in practice DES chains as many as 16 rounds

Image credit: E. Thome

Block cipher evolution

Intro to crypto - K. Hövelmanns

DES key length: 56 bits → brute-force vulnerability:

• DES cracker (1998, Electronic Frontier Foundation, US$ 250,000)

• COPACOBANA (2006, U Bochum + Kiel, US$ 10,000)

If DES is still used, then as Triple-DES, using three keys 𝑘1, 𝑘2 and 𝑘3:

 𝑐 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑘3
𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑘2

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑘1
𝑚

AES: new standard, established in 2001

• chosen during ‘competition’ established by National Institute for Standardisation
(NIST)

• not Feistel-based: based on Rijndael cipher, designed by Daemen and Rijmen

Modes of operation

Intro to crypto - K. Hövelmanns

So far: block cipher encrypt ℓ bits of message

What if messages are longer than ℓ bits?

Just split + encrypt block-wise? (‘Electronic codebook’)

Image credit: T. Lange + J. Jean

Modes of operation

Image credit: T. Lange + J. Jean ECB penguin by en:User:Lunkwill

Intro to crypto - K. Hövelmanns

So far: block cipher encrypt ℓ bits of message

What if messages are longer than ℓ bits?

Just split + encrypt block-wise? (‘Electronic codebook’)

Secret-key encryption: wrap-up

Intro to crypto - K. Hövelmanns

Perfect secrecy is expensive (large keys)

One-time pad only is perfectly secure if we switch the key each time

In practice, we use a

• block cipher to encrypt blocks

• secure mode of operation (not ECB!) to encrypt messages longer than a single block

So far: discussed privacy, but not authenticity and/or integrity

Does secret-key encryption provide integrity?

Intro to crypto - K. Hövelmanns

Does secret-key encryption provide integrity?

Mr. Krabs knows his block ciphers →
tweaks ciphertext so it decrypts to

‘pay 99000’ instead of ‘pay 20’.

Intro to crypto - K. Hövelmanns

Hash functions

Intro to crypto - K. Hövelmanns

Function generating short handle (‘fingerprint’) for larger pieces of data:

Hash: 0,1 ∗ → 0,1 𝑛

Quite ubiquitous in crypto:

• message authentication codes (in a few slides: HMAC), e.g. in TLS

• digital certificates for public-key infrastructures

• public-key encryption, digital signatures (in second half of talk)

• secure password storage

Hash functions

Intro to crypto - K. Hövelmanns

Function generating short handle (‘fingerprint’) for larger pieces of data:

Hash: 0,1 ∗ → 0,1 𝑛

Security goals: e.g. we could want that the fingerprints

• are hard to compute without knowing the data

• change a lot even when the data is changed only a tiny bit (e.g., bit flip)

• uniquely identify the data (PGP fingerprints)

• do not give enough information to reconstruct the data

Hash functions: security definitions

Intro to crypto - K. Hövelmanns

Function generating short handle (‘fingerprint’) for larger pieces of data:

Hash: 0,1 ∗ → 0,1 𝑛

• Preimage resistance:

 Given output 𝑦 ∈ 0,1 𝑛, it’s hard to find 𝑥 ∈ 0,1 ∗ with Hash 𝑥 = 𝑦 (‘preimage’).

• Second preimage resistance:

 Given random input 𝑥 ∈ 0,1 ∗, it’s hard to find 𝑥′ ≠ 𝑥 with Hash 𝑥 = Hash 𝑥′ .

• Collision resistance:

 It’s hard to find 𝑥 and 𝑥′ ≠ 𝑥 with Hash 𝑥 = Hash 𝑥′ .

typically many!

Increasingly harder task for adversary

Hash functions: SHA-2 (‘Secure hash algorithm’)

Intro to crypto - K. Hövelmanns

Designed by the National Security Agency (NSA), first published in 2001.

Built using the Merkle–Damgård construction (next slide), from a compression function.

Main idea:

• easier to build fixed-size compression

• If you have secure compression function,

 MD gives you a hash function for free

Compression in SHA-2:

Davies-Meyer construction, using specialized

block cipher
Box based on slide by E. Thome

Family of keyed functions

C: 0,1 𝑘 × 0,1 2𝑛 → 0,1 𝑛

with inputs of fixed size 2𝑛 that get ‘compressed’
to half their size.

Ck

Hash functions: Merkle-Damgård construction

Intro to crypto - K. HövelmannsSlide based on slide by T. Lange

Start with some
initiation vector IV

Each step takes 𝑛 message bits as input, together with previous 𝑛-bit output ℎ𝑖−1, and
compresses these to 𝑛-bit block: ℎ𝑖 = 𝐶 𝑀𝑖−1, ℎ𝑖−1 .

𝑝𝑎𝑑(𝑚):

• Dissect full message 𝑚 into size-𝑛 blocks 𝑀1, ⋯ 𝑀𝑡 (to fit into compression function 𝐶)

• Use padding in the last block 𝑀𝑡 to fill it up to size 𝑛

Hash functions: Merkle-Damgård construction

Intro to crypto - K. Hövelmanns

Pros of this iterative design:

• Simplifies security reasoning: if compression function C is collision-resistant, then so is H.
• Incremental computation nice for small devices (stream data one block at a time)

Slide based on slide by T. Lange

Start with some
initiation vector IV

𝑝𝑎𝑑(𝑚):

• Dissect full message 𝑚 into size-𝑛 blocks 𝑀1, ⋯ 𝑀𝑡 (to fit into compression function 𝐶)

• Use padding in the last block 𝑀𝑡 to fill it up to size 𝑛

Hash functions evolution

Intro to crypto - K. Hövelmanns

SHA-1 (predecessor of SHA-2):

• flaws known since 2005, attacks public since 2017 (https://shattered.io/), 2020 (https://sha-
mbles.github.io/)

• still used for fingerprints (e.g., git) 

SHA-2:

• currently deemed secure

• widely used in various security applications and protocols

SHA-3: Latest addition to SHA family

• established during NIST standardization effort for hash functions

• not based on Merkle-Damgård, but on ‘sponges’

• currently deemed secure

https://shattered.io/
https://sha-mbles.github.io/
https://sha-mbles.github.io/

Hash functions good integrity checks?

Intro to crypto - K. Hövelmanns

e.g., Hash = SHA3

Q: Does this ensure the integrity of 𝑀′?

send 𝑀, 𝑡𝑎𝑔 = Hash 𝑀 receive 𝑀′, 𝑡𝑎𝑔′

check that 𝑡𝑎𝑔′ = Hash 𝑀′

Hash functions good integrity checks?

Intro to crypto - K. Hövelmanns

Q: Does this ensure the integrity of 𝑀′?

No: Mr. Krabs can pick his own 𝑐′ and compute 𝑡𝑎𝑔′ for 𝑐′ → keyless integrity checks won’t work!

send 𝑀, 𝑡𝑎𝑔 = Hash 𝑀 receive 𝑀′, 𝑡𝑎𝑔′

check that 𝑡𝑎𝑔′ = Hash 𝑀′
e.g., Hash = SHA3

Message authentication codes

Intro to crypto - K. Hövelmanns

MAC = ‘checksum’, taking key 𝑘 and message 𝑀 (plaintext or ciphertext) to produce authentication tag:

MAC: 𝐾𝑒𝑦𝑠 × 0,1 𝑚 → 0,1 𝑡

→ MAC can convince Paypal that 𝑀 really comes from Spongebob

Security goal = UnForgeability: Computing a valid MAC without knowing 𝑘 is hard.

• UF against Chosen Message Attacks (UF-CMA):

 even when given the power to request MAC 𝑘, 𝑀𝑖 on chosen messages 𝑀𝑖,

 computing a valid MAC 𝑘, 𝑀′ for a new a new 𝑀′ ≠ 𝑀𝑖 is hard.

Proposal: Take hash function Hash: 0,1 ∗ → 0,1 𝑛 and set

MAC𝑘 𝑀 = Hash(𝑘, 𝑀)

Hash-based MACs

Intro to crypto - K. Hövelmanns

Q: Hard to produce a valid MAC𝑘 𝑀′ if we can request MAC𝑘 𝑀𝑖 for any 𝑀𝑖 we like?

Length extension attack :

Exploit ‘chaining’ structure of 𝐇𝐚𝐬𝐡: pick message 𝑀 = ℎ𝑒𝑙𝑙𝑜, request 𝑡𝑎𝑔 = Hash(𝑘, ℎ𝑒𝑙𝑙𝑜).

• View ℎ𝑒𝑙𝑙𝑜 in padded block structure + add something: 𝑀′ = ℎ𝑒𝑙𝑙|𝑜𝑿𝑿𝑿|𝒅𝒐𝒓𝒌

• Tag for ℎ𝑒𝑙𝑙𝑜𝑋𝑋𝑋𝑑𝑜𝑟𝑘:

Hash 𝑘, ℎ𝑒𝑙𝑙𝑜𝑋𝑋𝑋𝑑𝑜𝑟𝑘 = Hash Hash 𝑘, ℎ𝑒𝑙𝑙𝑜 , 𝑑𝑜𝑟𝑘 = Hash 𝑡𝑎𝑔, 𝑑𝑜𝑟𝑘

Without knowing 𝒌, we can forge a tag for the message 𝒉𝒆𝒍𝒍𝒐𝑿𝑿𝑿𝒅𝒐𝒓𝒌!

Proposal: Take hash function Hash: 0,1 ∗ → 0,1 𝑛 and set

MAC𝑘 𝑀 = Hash(𝑘, 𝑀)

Hash-based MACs

Intro to crypto - K. Hövelmanns

Hash-based MACs: HMAC

Intro to crypto - K. Hövelmanns

Puts the key 𝑘

• at the end to prevent length-extension attacks (you’d need to
know 𝑑𝑜𝑟𝑘|𝒌),

• but also at the beginning (to deal with collisions).

HMAC𝑘 𝑀 = Hash(𝑘 ⊕ 𝑜𝑝𝑎𝑑, Hash 𝑘 ⊕ 𝑖𝑝𝑎𝑑, 𝑀)

Mixes up 𝑘 via two different padding strings (𝑖𝑝𝑎𝑑, 𝑜𝑝𝑎𝑑), so
that the MAC doesn't use the same key twice

Authenticated encryption

Intro to crypto - K. Hövelmanns

We looked at privacy and authenticity separately:

Q: How to achieve both goals at once?

Goal Primitive Security notion

Data privacy Secret-key encryption IND-CPA:
Hard to tell 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝐾 𝑚1 from 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝐾 𝑚2

Data authenticity
/ integrity

Message authentication code UF-CMA:
Hard to forge 𝑀𝐴𝐶 𝑘, 𝑀′ , even when seeing 𝑀𝐴𝐶 𝑘, 𝑀1 ,
𝑀𝐴𝐶 𝑘, 𝑀2 , ⋯

Three common combination approaches

Intro to crypto - K. Hövelmanns

Key 𝑘 =

𝑘𝐸𝑁𝐶 𝑘𝑀𝐴𝐶

Ciphertext 𝑐 Tag 𝑡

Privacy?

Adversaries can detect resent messages
because MAC is deterministic

• Encrypt-and-MAC

• used in SSH

• not secure per se (SSH uses modifications)

Plaintext MACEncryption

Three common combination approaches

Intro to crypto - K. Hövelmanns

Key 𝑘 =

𝑘𝐸𝑁𝐶 𝑘𝑀𝐴𝐶

Ciphertext 𝑐 Tag 𝑡

Integrity?

Not necessarily: may be able to tweak 𝑐
into 𝑐′ in a way that its decryption is still the
same. Then 𝑡 is still valid!

• Encrypt-and-MAC

• used in SSH

• not secure per se (SSH uses modifications)

Plaintext MACEncryption

Three common combination approaches

Intro to crypto - K. Hövelmanns

• Encrypt-and-MAC

• used in SSH

• not secure per se (SSH uses modifications)

• MAC-then-Encrypt

• used in TLS 1.2

Privacy?

If encryption is IND-CPA secure,

• resent messages are unnoticeable (despite MAC)

• the MAC-then-encrypt construction is also IND-CPA secure

Key 𝑘 =

𝑘𝐸𝑁𝐶 𝑘𝑀𝐴𝐶

Plaintext MAC

Encryption

Ciphertext 𝑐

Plaintext Tag 𝑡

Three common combination approaches

Intro to crypto - K. Hövelmanns

• Encrypt-and-MAC

• used in SSH

• not secure per se (SSH uses modifications)

• MAC-then-Encrypt

• used in TLS 1.2

• not secure per se, but can be if done right

Integrity?

Same problem as before!

Key 𝑘 =

𝑘𝐸𝑁𝐶 𝑘𝑀𝐴𝐶

Plaintext MAC

Encryption

Ciphertext 𝑐

Plaintext Tag 𝑡

Three common combination approaches

Intro to crypto - K. Hövelmanns

• Encrypt-and-MAC

• used in SSH

• not secure per se (SSH uses modifications)

• MAC-then-Encrypt

• used in TLS 1.2

• not secure per se, but can be if done right

• Encrypt-then-MAC

• used in IPSec

• Privacy: IND-CPA if Encryption is IND-CPA

• Integrity: no computing right 𝑡′ for 𝑐′ without 𝑘𝑀𝐴𝐶

Key 𝑘 =

𝑘𝐸𝑁𝐶 𝑘𝑀𝐴𝐶

Ciphertext 𝑐 Tag 𝑡

Encryption

Ciphertext 𝑐

Plaintext

MAC

Proof sketch: Encrypt-then-MAC is IND-CPA

Encrypt-then-MAC 𝑘𝐸𝑁𝐶 , 𝑘𝑀𝐴𝐶 , 𝑚 = 𝑐, 𝑡 with 𝑐 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 𝑘𝐸𝑁𝐶 , 𝑚 and 𝑡 = 𝑀𝐴𝐶 𝑘𝑀𝐴𝐶 , 𝑐

Want to show: if 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 is IND-CPA secure, then so is Encrypt-then-MAC.

𝑚1, 𝑚2

Encrypt-then-MAC
functionality

IND-CPA attack on
Encrypt-then-MAC

𝑐 = encryption of
either 𝑚1 or 𝑚2

𝑡 = 𝑀𝐴𝐶 𝑘𝑀𝐴𝐶 , 𝑐

𝑐, 𝑡

(𝑐, 𝑡),
belongs to
𝑚1/ 𝑚2!

Tool: Turn attack on Encrypt-then-MAC into attack on 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 (‘security reduction’):

Intro to crypto - K. Hövelmanns

• Show: Successful attack on Encrypt-then-MAC gives successful attack on 𝐸𝑛𝑐𝑟𝑦𝑝𝑡
• But 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 is secure. So no successful attack on Encrypt-then-MAC can exist!

Proof sketch: Encrypt-then-MAC is IND-CPA

Encrypt-then-MAC 𝑘𝐸𝑁𝐶 , 𝑘𝑀𝐴𝐶 , 𝑚 = 𝑐, 𝑡 with 𝑐 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 𝑘𝐸𝑁𝐶 , 𝑚 and 𝑡 = 𝑀𝐴𝐶 𝑘𝑀𝐴𝐶 , 𝑐

Want to show: if 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 is IND-CPA secure, then so is Encrypt-then-MAC.

Tool: Turn attack on Encrypt-then-MAC into attack on 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 (‘security reduction’):

𝑚1, 𝑚2

IND-CPA attack on
Encrypt-then-MAC

𝑐, 𝑡

(𝑐, 𝑡),
belongs to
𝑚1/ 𝑚2!𝐸𝑛𝑐𝑟𝑦𝑝𝑡 functionality IND-CPA attack on

𝐸𝑛𝑐𝑟𝑦𝑝𝑡

𝑚1, 𝑚2

𝑐 = encryption of
either 𝑚1 or 𝑚2

𝑐 = encryption of
either 𝑚1 or 𝑚2

𝑡 = 𝑀𝐴𝐶 𝑘𝑀𝐴𝐶 , 𝑐

Pick your own 𝑘𝑀𝐴𝐶

𝑐

• Show: Successful attack on Encrypt-then-MAC gives successful attack on 𝐸𝑛𝑐𝑟𝑦𝑝𝑡
• But 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 is secure. So no successful attack on Encrypt-then-MAC can exist!

𝑐 belongs
to 𝑚1/ 𝑚2!
(copy Vlad)

Intro to crypto - K. Hövelmanns

How to share a secret key?

Intro to crypto - K. Hövelmanns

Public-key encryption (PKE)

Image source: xkcd.com

I should tell Bob
to sell!

Intro to crypto - K. Hövelmanns

Public-key encryption (PKE)

Image source: xkcd.com

I should tell Bob
to sell!

Intro to crypto - K. Hövelmanns

Public-key encryption (PKE)

Image source: xkcd.com

I should tell Bob
to sell!

Intro to crypto - K. Hövelmanns

Public-key encryption (PKE)

Image source: xkcd.com

I should tell Bob
to sell!

Intro to crypto - K. Hövelmanns

Public-key encryption (PKE)

Image source: xkcd.com Intro to crypto - K. Hövelmanns

Public-key encryption (PKE)

Image source: xkcd.com Intro to crypto - K. Hövelmanns

Public-key encryption (PKE)

Sell!

Image source: xkcd.com Intro to crypto - K. Hövelmanns

Public-key encryption (PKE)

Image source: xkcd.com Intro to crypto - K. Hövelmanns

Public-key encryption (PKE)

Sell!

Image source: xkcd.com Intro to crypto - K. Hövelmanns

Security definitions
What is Bob

up to?

Image source: xkcd.com Intro to crypto - K. Hövelmanns

Security definitions
What is Bob

up to?

Image source: xkcd.com Intro to crypto - K. Hövelmanns

Ciphertext indistinguishability
Sell!

„Sell“??
„Hold“??

Image source: xkcd.com Intro to crypto - K. Hövelmanns

Ciphertext indistinguishability games
Sell!

„Sell“??
„Hold“??

Image source: xkcd.com

Left game Right game

Adversary gets public key
Adversary picks two messages m1 and m2

Adversary gets encryption of:

m1 m2

Adversary guesses which game it’s playing

Question: Can we have IND-CPA security if encryption is deterministic*?

Indistinguishability under chosen-plaintext attacks = public key

version of symmetric-key IND-CPA:

Intro to crypto - K. Hövelmanns

* = encrypting a message m always gives the same result

Ciphertext indistinguishability games
Sell!

„Sell“??
„Hold“??

Image source: xkcd.com

Left game Right game

Adversary gets public key
Adversary picks two messages m1 and m2

Adversary gets encryption of:

m1 m2

Adversary guesses which game it’s playing

Question: Can we have IND-CPA security if encryption is deterministic*?

Indistinguishability under chosen-plaintext attacks = public key

version of symmetric-key IND-CPA:

Intro to crypto - K. Hövelmanns

No, but encryption could still be hard to invert. * = encrypting a message m always gives the same result

Image source: xkcd.com Post-quantum crypto - Kathrin Hövelmanns

PKE example: Schoolbook RSA

I should tell Bob
to sell!

How could Alice encrypt ‚sell‘?

RSA: computations with primes!

Schoolbook RSA = simplification of PKCS#1, the
PKE scheme used in TLS’s predecessor.

Image source: xkcd.com Post-quantum crypto - Kathrin Hövelmanns

PKE example: Schoolbook RSA

I should tell Bob
to sell!

Pick 2 prime
numbers: 5,17

Multiply:
5 * 17 = 85

Image source: xkcd.com Post-quantum crypto - Kathrin Hövelmanns

PKE example: Schoolbook RSA

I should tell Bob
to sell!

Pick numbers 𝑒, 𝑑 s.th.
modulo 85, we always

have 𝑥𝑒 𝑑 = 𝑥

Image source: xkcd.com Post-quantum crypto - Kathrin Hövelmanns

PKE example: Schoolbook RSA

I should tell Bob
to sell!

𝑒 = 5, 𝑑 = 13

𝑥 = 2

𝑥𝑒 = 25 = 32

2𝑒 𝑑 = 3213 (large, but has remainder 2!)

Also works for 𝑥 = 3, 𝑥 = 4, 𝑥 = 5, …

Example:

Pick numbers 𝑒, 𝑑 s.th.
modulo 85, we always

have 𝑥𝑒 𝑑 = 𝑥

Image source: xkcd.com Post-quantum crypto - Kathrin Hövelmanns

PKE example: Schoolbook RSA

I should tell Bob
to sell!

‚Bob: 85, e‘

Store 85, d

Key server Pick numbers 𝑒, 𝑑 s.th.
modulo 85, we always

have 𝑥𝑒 𝑑 = 𝑥

Image source: xkcd.com Post-quantum crypto - Kathrin Hövelmanns

PKE example: Schoolbook RSA

Store 85, d

‚Bob: 85, e‘

Key server Pick numbers 𝑒, 𝑑 s.th.
modulo 85, we always

have 𝑥𝑒 𝑑 = 𝑥

Image source: xkcd.com Post-quantum crypto - Kathrin Hövelmanns

PKE example: Schoolbook RSA

Store 85, d

Convert ‚Sell‘ into integer 𝑚 < 85

Compute 𝑚𝑒

Divide by 85, keep the remainder

Use the remainder as
‚Sell!‘

The math:

Lock with 85, e.

Use math:

‚Sell!‘
Pick numbers 𝑒, 𝑑 s.th.
modulo 85, we always

have 𝑥𝑒 𝑑 = 𝑥

Image source: xkcd.com Post-quantum crypto - Kathrin Hövelmanns

PKE example: Schoolbook RSA

Store 85, d

Unlocking x

message 𝑚 = 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 𝑚𝑒 𝑑

‚Sell!‘

Pick numbers 𝑒, 𝑑 s.th.
modulo 85, we always

have 𝑥𝑒 𝑑 = 𝑥

Security intuition: RSA = trapdoor permutation

Intro to crypto - K. Hövelmanns

Like on the previous slides, we take

• as modulus 𝑁 a prime product.

• 𝑒, 𝑑 s.th. dividing 𝑥𝑒 𝑑 by N always has remainder 𝑥.

𝑥 ↦ 𝑥𝑒 mod 𝑁

RSA𝑒: 1, 2, 3, ⋯ , 𝑁 − 1 → 1, 2, 3, ⋯ , 𝑁 − 1

By choice of 𝑒 and 𝑑, RSA𝑒 is a permutation

So-called trapdoor one-way permutation: Computing 𝑥𝑒 is easy, inverting is

• believed to be hard given only 𝑁 and 𝑒 (public key) ← if we chose the parameters appropriately (!)

• easy given trapdoor 𝑑 (the secret key)

RSA𝑒 may be hard to invert, but is deterministic → no IND-CPA security!

 In practice, we need appropriate padding.

Chosen-ciphertext attacks
Maybe I can trick
Bob‘s notebook…

Image source: xkcd.com Intro to crypto - K. Hövelmanns

Chosen-ciphertext attacks
Maybe I can trick
Bob‘s notebook…

Image source: xkcd.com Intro to crypto - K. Hövelmanns

Chosen-ciphertext attacks
Maybe I can trick
Bob‘s notebook…

Image source: xkcd.com Intro to crypto - K. Hövelmanns

Chosen-ciphertext attacks
„Sell“!

Image source: xkcd.com

[Bleichenbacher 98]

Intro to crypto - K. Hövelmanns

Ciphertext indistinguishability games
Sell!

„Sell“??
„Hold“??

Image source: xkcd.com

Left game Right game

Adversary gets public key
Adversary picks two messages m1 and m2

Adversary gets encryption of:

m1 m2

Adversary guesses which game it’s playing

IND-CCA security: Indistinguishability under chosen-ciphertext attacks.

Like IND-CPA:

Difference to IND-CPA: Adversary can additionally request decryptions for any
ciphertext is chooses…

Wait, can’t this always be won?
Intro to crypto - K. Hövelmanns

Ciphertext indistinguishability games
Sell!

„Sell“??
„Hold“??

Image source: xkcd.com

Left game Right game

Adversary gets public key
Adversary picks two messages m1 and m2

Adversary gets encryption of:

m1 m2

Adversary guesses which game it’s playing

IND-CCA security: Indistinguishability under chosen-ciphertext attacks.

Like IND-CPA:

Difference to IND-CPA: Adversary can additionally request decryptions for any
ciphertext is chooses… except the provided encryption of m1/m2

Intro to crypto - K. Hövelmanns

Back to what we wanted

Goal: Find a public-key method to securely establish symmetric keys 𝐾𝑠𝑦𝑚.

(Why not just use PKE to send encrypted messages? Efficiency.)

This is called a Key Encapsulation Mechanism (KEM).

Intro to crypto - K. Hövelmanns

Bob‘s
secret key

Bob‘s
public key

𝐾𝑠𝑦𝑚

Image source: xkcd.com

Key Encapsulation Mechanisms (KEMs)

A KEM consists of 3 Algorithms:

1. KeyGen: Outputs a public/secret key pair (𝑝𝑘, 𝑠𝑘)

2. Encapsulate(𝑝𝑘): Uses 𝑝𝑘 to create 𝐾𝑠𝑦𝑚 and a ciphertext 𝑐

3. Decapsulate(𝑠𝑘, 𝑐): Uses 𝑠𝑘 to recreate 𝐾𝑠𝑦𝑚 from 𝑐

Intro to crypto - K. Hövelmanns

Bob‘s
secret key

Bob‘s
public key

𝐾𝑠𝑦𝑚
𝑐 =

Image source: xkcd.com

KEMs: Security definition

A ciphertext 𝑐 shouldn‘t leak substantial information about 𝐾𝑠𝑦𝑚.

Intro to crypto - K. Hövelmanns

Bob‘s
secret key

Bob‘s
public key

𝐾𝑠𝑦𝑚
𝑐 =

What is Bob
up to?

Image source: xkcd.com

Indistinguishability game for KEMs

Image source: xkcd.com

Left game Right game

Adversary gets public key
Adversary gets ciphertext c computed via Encapsulate, together with

The 𝐾𝑠𝑦𝑚 that accompanied c A uniformly random 𝐾𝑠𝑦𝑚

Adversary guesses which game it’s playing

IND-CPA-KEM security: Indistinguishability for KEMs.

What is Bob
up to?

Intro to crypto - K. Hövelmanns

KEMs in practice: NIST ‘competition’

Intro to crypto - K. Hövelmanns

Bob‘s
secret key

Bob‘s
public key

𝐾𝑠𝑦𝑚

Fujisaki-Okamoto (FO) :

• ‘generic’ encryption-to-key-encapsulation recipe

• = moduleLWE encryption, plugged into FO recipe

Shared approach: PKE from hardness assumption + Fujisaki-Okamoto ‘recipe’

Encrypt 𝑚:
Pick random message 𝑚

Fujisaki-Okamoto KEMs: initial idea

Intro to crypto - K. HövelmannsImage source: xkcd.com

𝑚

Bob‘s
secret key

Bob‘s
public key

Goal: Find a way to establish symmetric keys 𝐾𝑠𝑦𝑚, securely.

You may use a public-key encryption scheme.

𝑚

Decrypt
𝑚

Encrypt 𝑚:
Pick random message 𝑚

Fujisaki-Okamoto KEMs: initial idea

Intro to crypto - K. Hövelmanns

𝑚

Image source: xkcd.com

Set 𝐾𝑠𝑦𝑚 ≔ ? ? ?

𝑚

Bob‘s
secret key

Bob‘s
public key

Goal: Find a way to establish symmetric keys 𝐾𝑠𝑦𝑚, securely.

You may use a public-key encryption scheme.

What should Alice and
Bob pick as 𝐾𝑠𝑦𝑚?

Maybe 𝐾𝑠𝑦𝑚 ≔ 𝑚?
Set 𝐾𝑠𝑦𝑚 ≔ ? ? ?

Breaking the KEM:

Seeing an encryption of 𝑚,
𝑨’s task is to tell 𝐾𝑠𝑦𝑚 = 𝑚

apart from random.

‘real’ /
’random’

𝑨

Decrypt
𝑚

Encrypt 𝑚:
Pick random message 𝑚

Fujisaki-Okamoto KEMs: initial idea

Intro to crypto - K. Hövelmanns

𝑚

Image source: xkcd.com

Set 𝐾𝑠𝑦𝑚 ≔ Hash(𝑚)

Set 𝐾𝑠𝑦𝑚 ≔ Hash(𝑚)

𝑚

Bob‘s
secret key

Bob‘s
public key

Goal: Find a way to establish symmetric keys 𝐾𝑠𝑦𝑚, securely.

You may use a public-key encryption scheme and a hash function.

Decrypt
𝑚

Encrypt 𝑚:
Pick random message 𝑚

Fujisaki-Okamoto KEMs: initial idea

Intro to crypto - K. Hövelmanns

𝑚

Image source: xkcd.com

Set 𝐾𝑠𝑦𝑚 ≔ Hash(𝑚)

Set 𝐾𝑠𝑦𝑚 ≔ Hash(𝑚)

𝑚

Bob‘s
secret key

Bob‘s
public key

Goal: Find a way to establish symmetric keys 𝐾𝑠𝑦𝑚, securely.

You may use a public-key encryption scheme and a hash function.

Q: Is this secure?

Proof heuristic:

Assume (!) Hash outputs are
unpredictable + unrelated

→ 𝑨 has 0 chance distinguishing
without computing Hash(𝑚) itself

… for which it needs to know 𝑚
… meaning it inverted encryption!

Breaking the KEM:

Seeing an encryption of 𝑚,
𝑨’s task is to tell 𝐾𝑠𝑦𝑚 =

Hash(𝑚) apart from random.

‘real’ /
’random’

𝑨

Security against chosen-ciphertext attacks

Intro to crypto - K. Hövelmanns

Goal: Find a way to establish symmetric keys 𝐾𝑠𝑦𝑚 with chosen-ciphertext security.

→ attacker allowed to request decapsulation for any ciphertext.

Only high-level: slightly alter how the KEM en-/decapsulates:

Altered decapsulation will

• detect malicious ciphertexts

• punish those by rejecting to return a meaningful key.

→ hard for attacker to request useful decapsulations

It is still being researched today which altering strategy works best!

Take-aways

Intro to crypto - K. HövelmannsImage source: xkcd.com

PKEs give us privacy (without secret meetings), KEMs make this more efficient.

We have a ‘cooking recipe’ for turning PKE into a KEM (called Fujisaki-Okamoto).

We used a ‚lego‘ approach very common in crypto:

Simple primitive
(e.g., PKE)

Transformer (e.g., FO)
More complex primitive

(e.g., KEM)

Q: how can we guarantee data authenticity/integrity?

Digital signatures – a bit like MACs:

Image source: xkcd.com Intro to crypto - K. HövelmannsImage source: xkcd.com

to sign message 𝑚:

Use

to verify

Use

𝑚
𝑚

𝑚 and
Alice‘s

secret key

𝑚

Alice‘s
public key

https://www.google.com/imgres?imgurl=https%3A%2F%2Fstatic.antiquejewellerycompany.com%2F2021%2F09%2F35e8d22c-seal-document.jpg&tbnid=3NiS0eYMG4CyhM&vet=12ahUKEwjQgsbAh_OBAxWyi_0HHWtqAXEQMygBegQIARBP..i&imgrefurl=https%3A%2F%2Fwww.antiquejewellerycompany.com%2Fgold-signet-rings%2F&docid=X1335XJ5qqBxYM&w=2140&h=941&q=signed%20document%20signet&client=firefox-b-d&ved=2ahUKEwjQgsbAh_OBAxWyi_0HHWtqAXEQMygBegQIARBP

Security goal = UnForgeability: Computing a valid signature without knowing secret key s𝑘
is hard.

(Attackers will know the public key, though.)

• UF against Chosen Message Attacks (UF-CMA):

 even given the power to request signatures on chosen messages 𝑚𝑖,

 a valid signature for a new message 𝑚′ ≠ 𝑚𝑖 is hard to produce.

Digital signatures: security goals

Intro to crypto - K. Hövelmanns

𝑚 and
Alice‘s

secret key

𝑚

Alice‘s
public key

Digital signatures – a bit like MACs, but not fully:

Image source: xkcd.com Intro to crypto - K. HövelmannsImage source: xkcd.com

Signatures: 𝑚 and
Alice‘s

public key

𝑚

Alice‘s
secret key

𝑚 and MAC 𝑚
Shared

secret key

Shared
secret key

MACs:

Schoolbook RSA signatures

Intro to crypto - K. HövelmannsImage source: xkcd.com

Remember RSA function: We take

• as modulus 𝑁 a prime product.

• 𝑒, 𝑑 s.th. dividing 𝑥𝑒 𝑑 by N always has remainder 𝑥 → RSA𝑒 is a permutation:

𝑥 ↦ 𝑥𝑒 mod 𝑁

RSA𝑒: 1, 2, 3, ⋯ , 𝑁 − 1 → 1, 2, 3, ⋯ , 𝑁 − 1

Like before, we set: public key = 𝑁, 𝑒 , secret key = 𝑑:

𝑑 𝑁, 𝑒

Schoolbook RSA signatures

Intro to crypto - K. HövelmannsImage source: xkcd.com

𝑥 ↦ 𝑥𝑒 mod 𝑁

RSA𝑒: 1, 2, 3, ⋯ , 𝑁 − 1 → 1, 2, 3, ⋯ , 𝑁 − 1

𝑁, 𝑒

Sign message 𝑚 < 𝑁:

𝑚 = 𝑚𝑑 mod 𝑁

𝑑

𝑚

Check 𝑠𝑒 = 𝑚 mod 𝑁

Verify :𝑚

Remember RSA function: We take

• as modulus 𝑁 a prime product.

• 𝑒, 𝑑 s.th. dividing 𝑥𝑒 𝑑 by N always has remainder 𝑥 → RSA𝑒 is a permutation:

𝑚 and 𝑠 =

Schoolbook RSA signatures

Intro to crypto - K. HövelmannsImage source: xkcd.com

Remember RSA function: We take

• as modulus 𝑁 a prime product.

• 𝑒, 𝑑 s.th. dividing 𝑥𝑒 𝑑 by N always has remainder 𝑥 → RSA𝑒 is a permutation:

𝑥 ↦ 𝑥𝑒 mod 𝑁

RSA𝑒: 1, 2, 3, ⋯ , 𝑁 − 1 → 1, 2, 3, ⋯ , 𝑁 − 1

𝑁, 𝑒

Sign message 𝑚 < 𝑁:

𝑚 = 𝑚𝑑 mod 𝑁

𝑑

𝑚

Verify :𝑚

Can Mr. Krabs - only knowing the public key 𝑁, 𝑒, but not 𝑑 – sign a
message such that Bob accepts the signature?)

Q: Is this secure?

Check 𝑠𝑒 = 𝑚 mod 𝑁

𝑚 and 𝑠 =

Schoolbook RSA signatures

Intro to crypto - K. HövelmannsImage source: xkcd.com

Remember RSA function: We take

• as modulus 𝑁 a prime product.

• 𝑒, 𝑑 s.th. dividing 𝑥𝑒 𝑑 by N always has remainder 𝑥 → RSA𝑒 is a permutation:

𝑥 ↦ 𝑥𝑒 mod 𝑁

RSA𝑒: 1, 2, 3, ⋯ , 𝑁 − 1 → 1, 2, 3, ⋯ , 𝑁 − 1

𝑁, 𝑒

Sign message 𝑚 < 𝑁:

𝑚 = 𝑚𝑑 mod 𝑁

𝑑

𝑚

Verify :𝑚

Q: Is this secure?

Key-only forgery: Pick arbitrary ‘signature’ 𝑠, set 𝑚 = 𝑠𝑒 mod 𝑁

→ 𝑠 is a valid signature for 𝑚 that will be accepted by Bob!

In practice, however, 𝑚 might look unconvincing to the recipient.

Check 𝑠𝑒 = 𝑚 mod 𝑁

𝑚 and 𝑠 =

Can Mr. Krabs - only knowing the public key 𝑁, 𝑒, but not 𝑑 – sign a
message such that Bob accepts the signature?)

Schoolbook RSA signatures

Intro to crypto - K. HövelmannsImage source: xkcd.com

Remember RSA function: We take

• as modulus 𝑁 a prime product.

• 𝑒, 𝑑 s.th. dividing 𝑥𝑒 𝑑 by N always has remainder 𝑥 → RSA𝑒 is a permutation:

𝑥 ↦ 𝑥𝑒 mod 𝑁

RSA𝑒: 1, 2, 3, ⋯ , 𝑁 − 1 → 1, 2, 3, ⋯ , 𝑁 − 1

𝑁, 𝑒

Sign message 𝑚 < 𝑁:

𝑚 = 𝑚𝑑 mod 𝑁

𝑑

𝑚
𝑠 =

Verify :𝑚

Check 𝑠𝑒 = 𝑚 mod 𝑁

Q: Is this secure?

Targetted forgery via signature requests: Choose target message 𝑚∗.

We’ll exploit the multiplicative property of the RSA function (‘verification
preserves multiplication’):

𝑠1 ⋅ 𝑠2
𝑒 = 𝑠1

𝑒 ⋅ 𝑠2
𝑒 mod 𝑁

Attack:
• Pick arbitrary message 𝑚1, and 𝑚1

−1 such that 𝑚1𝑚1
−1 mod 𝑁 = 1.

• Request signature 𝑠1 for 𝑚1: you get 𝑠1 = 𝑚1
𝑑

 and signature 𝑠2 for 𝑚2 = 𝑚1
−1 ⋅ 𝑚∗: you get 𝑠2 = 𝑚2

𝑑

Sign 𝑚∗ with s∗ = 𝑠1 ⋅ 𝑠2 → Bob accepts since 𝑠∗ 𝑒 = 𝑚∗ mod 𝑁 :

𝑠∗ 𝑒 = 𝑠1
𝑒 ⋅ 𝑠2

𝑒 = 𝑚1 ⋅ 𝑚2 = 𝑚1 ⋅ 𝑚1
−1 ⋅ 𝑚∗ = 𝑚∗ mod 𝑁

Can Mr. Krabs - only knowing the public key 𝑁, 𝑒, but not 𝑑 – sign a
message such that Bob accepts the signature?)

Schoolbook RSA signatures

Intro to crypto - K. HövelmannsImage source: xkcd.com

Remember RSA function: We take

• as modulus 𝑁 a prime product.

• 𝑒, 𝑑 s.th. dividing 𝑥𝑒 𝑑 by N always has remainder 𝑥 → RSA𝑒 is a permutation:

𝑥 ↦ 𝑥𝑒 mod 𝑁

RSA𝑒: 1, 2, 3, ⋯ , 𝑁 − 1 → 1, 2, 3, ⋯ , 𝑁 − 1

𝑁, 𝑒

Sign message 𝑚 < 𝑁:

𝑚 = Hash 𝑚 𝑑 mod 𝑁

𝑑

𝑚

Verify :𝑚

Q: Can we tweak this so it becomes secure?

Idea: Pick hash function Hash: 0,1 ∗ → 1, 2, 3, ⋯ , 𝑁 − 1 , sign messages
𝑚 ∈ 0,1 ∗ by applying RSA signature approach to Hash 𝑚 .

Advantage 1: We can now sign arbitrary-length messages.
Advantage 2: Targetted attack a lot harder: need to find 𝑚, 𝑚1, 𝑚2 such that

Hash 𝑚 = Hash 𝑚1 ⋅ Hash 𝑚2 mod 𝑁

𝑠𝑒 = Hash 𝑚 mod 𝑁?

𝑚 and 𝑠 =

Take trapdoor one-way permutation Π (like the RSA function): computing

• Π(𝑝𝑘, 𝑥) is easy (e.g., 𝑥𝑒)

• Π−1(𝑠𝑘, 𝑦) is (e.g., 𝑦𝑑)

• hard when not knowing 𝑠𝑘

• easy when knowing 𝑠𝑘

Π easy

Verify :

Π(𝑝𝑘, 𝑠) = Hash 𝑚 ?Sign message 𝑚:

= Π−1 𝑠𝑘, Hash 𝑚

Abstraction of tweak : full domain hash (FDH)

Intro to crypto - K. HövelmannsImage source: xkcd.com

𝑚

Alice‘s
secret key

Alice‘s
public key

𝑚 and 𝑠 =

M

X Y

Π−1

not easy without 𝑠𝑘

Hash

Approach based on identification schemes

HAETAE – provable securityImage source: xkcd.com

Alice‘s
secret key

Alice‘s
public key

Hey Alice, is
this really you?

https://www.google.com/imgres?imgurl=https%3A%2F%2Fstatic.antiquejewellerycompany.com%2F2021%2F09%2F35e8d22c-seal-document.jpg&tbnid=3NiS0eYMG4CyhM&vet=12ahUKEwjQgsbAh_OBAxWyi_0HHWtqAXEQMygBegQIARBP..i&imgrefurl=https%3A%2F%2Fwww.antiquejewellerycompany.com%2Fgold-signet-rings%2F&docid=X1335XJ5qqBxYM&w=2140&h=941&q=signed%20document%20signet&client=firefox-b-d&ved=2ahUKEwjQgsbAh_OBAxWyi_0HHWtqAXEQMygBegQIARBP

Approach based on identification schemes

Intro to crypto - K. HövelmannsImage source: xkcd.com

Alice‘s
secret key

Alice‘s
public key

𝑐ℎ𝑎𝑙

Pick challenge 𝑐ℎ𝑎𝑙

https://www.google.com/imgres?imgurl=https%3A%2F%2Fstatic.antiquejewellerycompany.com%2F2021%2F09%2F35e8d22c-seal-document.jpg&tbnid=3NiS0eYMG4CyhM&vet=12ahUKEwjQgsbAh_OBAxWyi_0HHWtqAXEQMygBegQIARBP..i&imgrefurl=https%3A%2F%2Fwww.antiquejewellerycompany.com%2Fgold-signet-rings%2F&docid=X1335XJ5qqBxYM&w=2140&h=941&q=signed%20document%20signet&client=firefox-b-d&ved=2ahUKEwjQgsbAh_OBAxWyi_0HHWtqAXEQMygBegQIARBP
https://www.google.com/imgres?imgurl=https%3A%2F%2Fmedia.istockphoto.com%2Fid%2F1336400835%2Fnl%2Fvector%2Fcartoon-dice-vector-illustration-on-white-background.jpg%3Fs%3D612x612%26w%3D0%26k%3D20%26c%3DYT5MlRIA6lVsKf7vVHdEOboLLtRXSbW_QChGHrN30AY%3D&tbnid=VHFMxdaxsGx_aM&vet=12ahUKEwj3xIzai_OBAxUFUeUKHcOhDHQQMygAegQIARBS..i&imgrefurl=https%3A%2F%2Fwww.istockphoto.com%2Fnl%2Fvector%2Fcartoon-dice-vector-illustration-on-white-background-gm1336400835-417673530&docid=ixb1lrThoVpqOM&w=612&h=612&q=dice&client=firefox-b-d&ved=2ahUKEwj3xIzai_OBAxUFUeUKHcOhDHQQMygAegQIARBS

Approach based on identification schemes

Intro to crypto - K. HövelmannsImage source: xkcd.com

Alice‘s
secret key

𝑐ℎ𝑎𝑙

to generate response 𝑟𝑒𝑠𝑝
from 𝑐ℎ𝑎𝑙 and 𝑐𝑜𝑚

𝑟𝑒𝑠𝑝

Use

Alice‘s
public key

to verify 𝑟𝑒𝑠𝑝

Use

Approach based on identification schemes

Intro to crypto - K. HövelmannsImage source: xkcd.com

Alice‘s
secret key

𝑐𝑜𝑚

𝑐ℎ𝑎𝑙

to generate response 𝑟𝑒𝑠𝑝
from 𝑐ℎ𝑎𝑙 and 𝑐𝑜𝑚

𝑟𝑒𝑠𝑝

Use

Alice‘s
public key

to verify 𝑟𝑒𝑠𝑝

Use

Approach based on identification schemes

Intro to crypto - K. HövelmannsImage source: xkcd.com

Alice‘s
secret key

= 𝑐𝑜𝑚, 𝑟𝑒𝑠𝑝
𝑚

Alice‘s
public key

to verify 𝑟𝑒𝑠𝑝

Use
generate 𝑟𝑒𝑠𝑝 from 𝑐𝑜𝑚

and 𝑐ℎ𝑎𝑙 ≔ Hash(𝑚, 𝑐𝑜𝑚)

Use to

Sign 𝑚 by tying identity proof
to 𝑚:

Take-aways

Intro to crypto - K. HövelmannsImage source: xkcd.com

We have a ‘cooking recipe’ for building signatures from a one-way trapdoor function

We again used the ‘lego‘ approach:

Simpler primitive
(RSA function)

Transformer (FDH)
More complex primitive

(signing algorithm)

Q: how would we prove security against quantum attackers? (next talk)

There are also other ‘recipes’ you will probably encounter during this week

All known recipes require some hardness assumption (e.g., ‘inverting 𝑥𝑒 is hard’)

… Damn.

Post-quantum crypto

Intro to crypto - K. Hövelmanns

RSA Problem that (hopefully) is hard even for quantum computers

Finding a shortest vector in a lattice (Thu)

Attacking hash functions (Wed)

Solving multi-variable polynomial equations (Fri)

1000 𝑥 + 𝑥2 + 423 𝑦2𝑧 = 1

655 𝑦 + 53 𝑦𝑧 = 13

29 𝑥 + 3 𝑦2 + 53 𝑥𝑧2 = 4

Decoding error-correcting codes (Wed)

break

If time permits: random oracle model (ROM)

Provable security and the quantum ROM - K. Hövelmanns

Security
game G

for design X

A

X-instance

Oracle for 𝑓

𝑥 𝑦

Heuristic: Replace hash function

Hash: 0,1 𝑛 → 0,1 𝑚

with ‘oracle box’ for truly random

𝑓: 0,1 𝑛 → 0,1 𝑚

𝑥

𝑦

If time permits: random oracle model (ROM)

Provable security and the quantum ROM - K. Hövelmanns

A

𝑥 𝑦

A

Reduction B
Oracle for 𝑓

Use problem
instance

to simulate
security game break

P-instance

Solution for P-instance

Heuristic: Replace hash function

Hash: 0,1 𝑛 → 0,1 𝑚

with ‘oracle box’ for truly random

𝑓: 0,1 𝑛 → 0,1 𝑚

Perks of the random oracle model

Provable security and the quantum ROM - K. Hövelmanns

• Unpredictability of 𝑓 𝑥

• ‘Tricking A’: Picking the 𝑦s smartly

enough, B can

a) trick A into solving B’s problem

b) feign secret knowledge it would - in

principle - need for A’s security game

A

𝑥 𝑦

A

Reduction B
Oracle for 𝑓

Use problem
instance

to simulate
security game break

P-instance

Solution for P-instance

𝑥′

Practice example: ROs as one-way functions

Provable security and the quantum ROM - K. Hövelmanns

A

𝑦∗

Oracle for 𝑓: 0,1 𝑛 → 0,1 𝑛

𝑥 𝑦
One-way game for RO 𝑓

Pick random 𝑥∗

Set 𝑦∗ ≔ 𝑓 𝑥∗

A wins if 𝑓 𝑥′ = 𝑦∗

Short DIY break:

Try to reason why it is hard for A to win

the one-way game if 𝑛 is large enough!

𝑥′

Practice example: ROs as one-way functions

Provable security and the quantum ROM - K. Hövelmanns

Say A makes q many queries to f

• Per query 𝑥 ≠ 𝑥∗: f returns 𝑦∗ with probability
1

2𝑛

• A queries f on 𝑥∗ with probability ⪅
𝑞

2𝑛

• If no query yields 𝑦∗: f (x’)= 𝑦∗ with probability
1

2𝑛

Pr 𝐴 𝑤𝑖𝑛𝑠 ⪅
𝑞

2𝑛
+

𝑞

2𝑛
+

1

2𝑛

A

𝑦∗

Oracle for 𝑓: 0,1 𝑛 → 0,1 𝑛

𝑥 𝑦
One-way game for RO 𝑓

Pick random 𝑥∗

Set 𝑦∗ ≔ 𝑓 𝑥∗

A wins if 𝑓 𝑥′ = 𝑦∗

This heuristic seems weird.

Provable security and the quantum ROM - K. Hövelmanns

 No theoretical justification

Counterexamples: designs that are

• secure in the ROM, but

• insecure when instantiating RO with any hash function

 So far: good track record for ‘natural’ schemes

Helps identify design bugs

	Slide 1: Intro to crypto
	Slide 2: Brief history of communicating secrets
	Slide 3: Brief history of communicating secrets
	Slide 4: Brief history of communicating secrets
	Slide 5: Brief history of communicating secrets
	Slide 6: Brief history of communicating secrets
	Slide 7: Brief history of communicating secrets
	Slide 8: Brief history of communicating secrets
	Slide 9: Brief history of communicating secrets
	Slide 10: Brief history of communicating secrets
	Slide 11: Did you use any cryptography today?
	Slide 12: Did you use any cryptography today?
	Slide 13: What do we want from cryptography?
	Slide 14: Secret-key encryption
	Slide 15: One-time pad
	Slide 16: Perfect security
	Slide 17: One-time pad is perfectly secure
	Slide 18: One-time pad is perfectly secure… if used once
	Slide 19: Computational security
	Slide 20: Permutations
	Slide 21: Block ciphers are families of permutations
	Slide 22: Using block ciphers to encrypt
	Slide 23: Data Encryption Standard (DES)
	Slide 24: Data Encryption Standard (DES): Feistel round
	Slide 25: Data Encryption Standard (DES): Feistel round
	Slide 26: Data Encryption Standard (DES): round chaining
	Slide 27: Block cipher evolution
	Slide 28: Modes of operation
	Slide 29: Modes of operation
	Slide 30: Secret-key encryption: wrap-up
	Slide 31: Does secret-key encryption provide integrity?
	Slide 32: Does secret-key encryption provide integrity?
	Slide 33: Hash functions
	Slide 34: Hash functions
	Slide 35: Hash functions: security definitions
	Slide 36: Hash functions: SHA-2 (‘Secure hash algorithm’)
	Slide 37: Hash functions: Merkle-Damgård construction
	Slide 38: Hash functions: Merkle-Damgård construction
	Slide 39: Hash functions evolution
	Slide 40: Hash functions good integrity checks?
	Slide 41: Hash functions good integrity checks?
	Slide 42: Message authentication codes
	Slide 43: Hash-based MACs
	Slide 44: Hash-based MACs
	Slide 45: Hash-based MACs: HMAC
	Slide 46: Authenticated encryption
	Slide 47: Three common combination approaches
	Slide 48: Three common combination approaches
	Slide 49: Three common combination approaches
	Slide 50: Three common combination approaches
	Slide 51: Three common combination approaches
	Slide 52: Proof sketch: Encrypt-then-MAC is IND-CPA
	Slide 53: Proof sketch: Encrypt-then-MAC is IND-CPA
	Slide 54: How to share a secret key?
	Slide 55: Public-key encryption (PKE)
	Slide 56: Public-key encryption (PKE)
	Slide 57: Public-key encryption (PKE)
	Slide 58: Public-key encryption (PKE)
	Slide 59: Public-key encryption (PKE)
	Slide 60: Public-key encryption (PKE)
	Slide 61: Public-key encryption (PKE)
	Slide 62: Public-key encryption (PKE)
	Slide 63: Public-key encryption (PKE)
	Slide 64: Security definitions
	Slide 65: Security definitions
	Slide 66: Ciphertext indistinguishability
	Slide 67: Ciphertext indistinguishability games
	Slide 68: Ciphertext indistinguishability games
	Slide 69: PKE example: Schoolbook RSA
	Slide 70: PKE example: Schoolbook RSA
	Slide 71: PKE example: Schoolbook RSA
	Slide 72: PKE example: Schoolbook RSA
	Slide 73: PKE example: Schoolbook RSA
	Slide 74: PKE example: Schoolbook RSA
	Slide 75: PKE example: Schoolbook RSA
	Slide 76: PKE example: Schoolbook RSA
	Slide 77: Security intuition: RSA = trapdoor permutation
	Slide 78: Chosen-ciphertext attacks
	Slide 79: Chosen-ciphertext attacks
	Slide 80: Chosen-ciphertext attacks
	Slide 81: Chosen-ciphertext attacks
	Slide 82: Ciphertext indistinguishability games
	Slide 83: Ciphertext indistinguishability games
	Slide 84: Back to what we wanted
	Slide 85: Key Encapsulation Mechanisms (KEMs)
	Slide 86: KEMs: Security definition
	Slide 87: Indistinguishability game for KEMs
	Slide 88: KEMs in practice: NIST ‘competition’
	Slide 89: Fujisaki-Okamoto KEMs: initial idea
	Slide 90: Fujisaki-Okamoto KEMs: initial idea
	Slide 91: Fujisaki-Okamoto KEMs: initial idea
	Slide 92: Fujisaki-Okamoto KEMs: initial idea
	Slide 93: Security against chosen-ciphertext attacks
	Slide 94: Take-aways
	Slide 95: Digital signatures – a bit like MACs:
	Slide 96: Digital signatures: security goals
	Slide 97: Digital signatures – a bit like MACs, but not fully:
	Slide 98: Schoolbook RSA signatures
	Slide 99: Schoolbook RSA signatures
	Slide 100: Schoolbook RSA signatures
	Slide 101: Schoolbook RSA signatures
	Slide 102: Schoolbook RSA signatures
	Slide 103: Schoolbook RSA signatures
	Slide 104: Abstraction of tweak : full domain hash (FDH)
	Slide 105: Approach based on identification schemes
	Slide 106: Approach based on identification schemes
	Slide 107: Approach based on identification schemes
	Slide 108: Approach based on identification schemes
	Slide 109: Approach based on identification schemes
	Slide 110: Take-aways
	Slide 111: Post-quantum crypto
	Slide 112: If time permits: random oracle model (ROM)
	Slide 113: If time permits: random oracle model (ROM)
	Slide 114: Perks of the random oracle model
	Slide 115: Practice example: ROs as one-way functions
	Slide 116: Practice example: ROs as one-way functions
	Slide 117: This heuristic seems weird.

