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Take-away 1:

Don’t hope that secret 
techniques will remain 

secret – they won’t.

‘It should not be a 
problem if [the 

system] falls into 
enemy hands.’

Kerckhoffs, 1883

Bodymod steganography
(Histiaeus,

acc. to Herodotus)
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… not too much going on here …

829 × 843

‚Caesar with codeword‘:

Codeword:
CRYPTO

A A -> C C

T A -> R K

T A -> Y R

A A -> P P

C A -> T V

K A -> O Y
Vigenère

1500 AD

https://www.google.com/url?sa=i&url=https%3A%2F%2Flehrerfortbildung-bw.de%2Fu_matnatech%2Finformatik%2Fgym%2Fbp2016%2Ffb1%2F3_rechner_netze%2F1_hintergrund%2F9_krypto%2F5_vignere%2F&psig=AOvVaw2Lu_hFnbtPxQYDB4XK6TL7&ust=1669840331816000&source=images&cd=vfe&ved=0CBAQjRxqFwoTCMiNpJCe1PsCFQAAAAAdAAAAABAE
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‚Caesar with codeword‘:

Codeword:
CRYPTO

A A -> C C

T A -> R K
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… not too much going on here …

829 × 843

‚Caesar with codeword‘:

Codeword:
CRYPTO

A A -> C C

T A -> R K

T A -> Y R

A A -> P P

C A -> T V

K A -> O Y
Vigenère

1500 AD

Tried
Statistics?

Babbage
1854

Kasiski
1863
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Bodymod steganography
(Histiaeus,

acc. to Herodotus)
Vigenère

Brief history of communicating secrets
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1500 AD 1930 AD

Enigma

700 BC

Scytale

440 BC 50 BC

Caesar cipher

… not too much going on here …

Beware hubris.

You don’t find attacks on how you communicate?

Doesn’t mean no one else does!



Did you use any cryptography today?

Amazon uses https, https invokes the TLS protocol

TLS uses cryptography

TLS is actually quite ubiquitous:

 shopping, banking, Netflix, gmail, Facebook (yes, I’m old), ...

Intro to crypto - K. Hövelmanns



Did you use any cryptography today?

Secure instant messaging:

How many apps do you use?

Intro to crypto - K. Hövelmanns



What do we want from cryptography?

Intro to crypto - K. Hövelmanns

Privacy:
Keeping secrets secret.

Integrity + authenticity: 
Ensure that message really came from 

declared sender + arrived unaltered



Secret-key encryption

Intro to crypto - K. Hövelmanns

𝐸𝑛𝑐𝑟𝑦𝑝𝑡 takes plaintext and key,

and produces ciphertext

𝐷𝑒𝑐𝑟𝑦𝑝𝑡 takes ciphertext and key, 
and produces plaintext

Goal #1: Confidentiality despite espionage (prerequisite: adversary does not know key)



One-time pad

Intro to crypto - K. Hövelmanns

Key 𝐾 is picked uniformly random from ℓ -bit strings: 𝐾 ← {0,1}ℓ

Plain- and ciphertexts are also ℓ -bit strings:  𝑚, 𝑐 ∈ {0,1}ℓ

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝐾 𝑚 = 𝐾 ⊕ 𝑚: add 𝐾 and 𝑚, modulo 2 in each position

𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝐾 𝑐 = 𝐾 ⊕ 𝑐 

This works: 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝐾 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝐾 𝑚 = 𝐾 ⊕ 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝐾 𝑚  = 𝐾 ⊕ 𝐾 ⊕ 𝑚 = 𝑚

e.g., 01 ⊕ 11 = 0 + 1 𝑚𝑜𝑑 2 1 + 1 𝑚𝑜𝑑 2 = 10

mod 2 = divide by 2, take remainder 



Perfect security
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Pr 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝐾 𝑚1 = 𝑐 = Pr 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝐾 𝑚2 = 𝑐

𝒎𝟏??
𝒎𝟐??

Formally: (KeyGen, Encrypt, Decrypt) perfectly secure iff 

for all plaintexts 𝑚1, 𝑚2 and all ciphertexts 𝑐:

Probability taken over the choice of key 𝐾

Important fact (Shannon): only possible if there are as many keys as 
there are potential messages



One-time pad is perfectly secure

Intro to crypto - K. Hövelmanns

One-time pad: 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝐾 𝑚 = 𝐾 ⊕ 𝑚, 𝐾 chosen randomly

Suppose adversary

• gets 𝑐 = 01

• knows: 𝑚 is either 𝑚1= 11 or 𝑚2= 01

• but doesn’t know 𝐾

Can it tell which message 𝑚 was?

No: could be 𝑚1= 11 (if 𝐾= 10) or 𝑚2= 01 (if 𝐾= 00)

both equally likely!



One-time pad is perfectly secure… if used once

Intro to crypto - K. Hövelmanns

One-time pad: 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝐾 𝑚 = 𝐾 ⊕ 𝑚, 𝐾 chosen randomly

Suppose

• adversary sees first encryption: 𝑐1 = 01 

• but now also 𝒄𝟐 = 𝒄𝟏 = 01

→ Adversary learns that same message was sent twice



Computational security

Intro to crypto - K. Hövelmanns

We want to encrypt

• arbitrary amounts of data

• with a single, short key

→ perfectly secure symmetric-key encryption infeasible in practice

Computational security (‘IND-CPA’) as relaxation of security goal:

Telling 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝐾 𝑚1  from  𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝐾 𝑚2 should be

• computationally infeasible (INDistinguishability),

• even if you chose 𝑚1 and 𝑚2 yourself (Chosen Plaintext Attack).



Permutations
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A permutation is a mapping Π: 𝑆 → 𝑆 from some set S to itself that is one-to-one.

[Slide based on one by  E.Thomé]

In other words: Π has an inverse Π−1: 𝑆 → 𝑆.

Example: S = 𝐴, 𝐵, 𝐶



Block ciphers are families of permutations

Intro to crypto - K. Hövelmanns

Block ciphers = two-input functions

E: 𝐾𝑒𝑦𝑠 × 0,1 ℓ → 0,1 ℓ

so such each key 𝐾 gives us a permutation

𝐸𝐾: 0,1 ℓ → 0,1 ℓ

(so for each key 𝐾,  𝐸𝐾 has an inverse 𝐸𝐾
−1)

(For practice: all functions 𝐸𝐾, 𝐸𝐾
−1 should be efficiently computable)

𝑥 ↦ 𝐸 𝐾, 𝑥



Using block ciphers to encrypt

Intro to crypto - K. Hövelmanns

𝑐

Encrypting 𝑚 = 𝑚1 ⋯ 𝑚ℓ:

𝑐 = Ek 𝑚1 ⋯ Ek(𝑚ℓ) Decrypting 𝑐 = 𝑐1 ⋯ 𝑐ℓ:

𝑚 = Ek
−1 𝑐1 ⋯ Ek

−1(𝑐ℓ) 

Security requirement:

𝑐 should leak neither 𝑚 nor 𝑘!



Data Encryption Standard (DES)

Intro to crypto - K. Hövelmanns

1972: NBS (now NIST) aims to standardise a block cipher

1974: IBM designs Lucifer, which evolves into DES

Widely adopted (e.g., used in ATMs)

High-level design: 

• Feistel network, made of successive rounds

• Each round = simple operation, using a bit of the secret key



Data Encryption Standard (DES): Feistel round

Intro to crypto - K. Hövelmanns

Swap sides

Split message into left half (𝐿0) and right half (𝑅0)

Apply some nonlinear (key-dependent) function 𝐹 to 𝑅0

to get OTP key for 𝐿0

Image credit: E. Thome



Data Encryption Standard (DES): Feistel round
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We can invert easily → this is a permutation!

Swap sides

Split message into left half (𝐿0) and right half (𝑅0)

Apply some nonlinear (key-dependent) function 𝐹 to 𝑅0

to get OTP key for 𝐿0

Image credit: E. Thome



Data Encryption Standard (DES): round chaining

Intro to crypto - K. Hövelmanns

One round looks simple enough

→ in practice DES chains as many as 16 rounds

Image credit: E. Thome



Block cipher evolution

Intro to crypto - K. Hövelmanns

DES key length: 56 bits → brute-force vulnerability:

• DES cracker (1998, Electronic Frontier Foundation, US$ 250,000)

• COPACOBANA (2006, U Bochum + Kiel, US$ 10,000)

If DES is still used, then as Triple-DES, using three keys 𝑘1, 𝑘2 and 𝑘3:

 𝑐 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑘3
𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑘2

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑘1
𝑚

AES: new standard, established in 2001

• chosen during ‘competition’ established by National Institute for Standardisation 
(NIST)

• not Feistel-based: based on Rijndael cipher, designed by Daemen and Rijmen



Modes of operation

Intro to crypto - K. Hövelmanns

So far: block cipher encrypt ℓ bits of message

What if messages are longer than ℓ bits?

Just split + encrypt block-wise? (‘Electronic codebook’)

Image credit: T. Lange + J. Jean



Modes of operation

Image credit: T. Lange + J. Jean ECB penguin by en:User:Lunkwill

Intro to crypto - K. Hövelmanns

So far: block cipher encrypt ℓ bits of message

What if messages are longer than ℓ bits?

Just split + encrypt block-wise? (‘Electronic codebook’)



Secret-key encryption: wrap-up

Intro to crypto - K. Hövelmanns

Perfect secrecy is expensive (large keys)

One-time pad only is perfectly secure if we switch the key each time

In practice, we use a

• block cipher to encrypt blocks

• secure mode of operation (not ECB!) to encrypt messages longer than a single block

So far: discussed privacy, but not authenticity and/or integrity



Does secret-key encryption provide integrity?

Intro to crypto - K. Hövelmanns



Does secret-key encryption provide integrity?

Mr. Krabs knows his block ciphers → 
tweaks ciphertext so it decrypts to 

‘pay 99000’ instead of ‘pay 20’.

Intro to crypto - K. Hövelmanns



Hash functions

Intro to crypto - K. Hövelmanns

Function generating short handle (‘fingerprint’) for larger pieces of data:

Hash: 0,1 ∗ → 0,1 𝑛

Quite ubiquitous in crypto:

• message authentication codes (in a few slides: HMAC), e.g. in TLS

• digital certificates for public-key infrastructures

• public-key encryption, digital signatures (in second half of talk)

• secure password storage



Hash functions

Intro to crypto - K. Hövelmanns

Function generating short handle (‘fingerprint’) for larger pieces of data:

Hash: 0,1 ∗ → 0,1 𝑛

Security goals: e.g. we could want that the fingerprints

• are hard to compute without knowing the data

• change a lot even when the data is changed only a tiny bit (e.g., bit flip)

• uniquely identify the data (PGP fingerprints)

• do not give enough information to reconstruct the data



Hash functions: security definitions

Intro to crypto - K. Hövelmanns

Function generating short handle (‘fingerprint’) for larger pieces of data:

Hash: 0,1 ∗ → 0,1 𝑛

• Preimage resistance:

   Given output 𝑦 ∈ 0,1 𝑛, it’s hard to find 𝑥 ∈ 0,1 ∗ with Hash 𝑥 = 𝑦 (‘preimage’).

• Second preimage resistance:

   Given random input 𝑥 ∈ 0,1 ∗, it’s hard to find 𝑥′ ≠ 𝑥 with Hash 𝑥 = Hash 𝑥′ .

• Collision resistance:

   It’s hard to find 𝑥 and 𝑥′ ≠ 𝑥 with Hash 𝑥 = Hash 𝑥′ .

typically many!

Increasingly harder task for adversary



Hash functions: SHA-2 (‘Secure hash algorithm’)

Intro to crypto - K. Hövelmanns

Designed by the National Security Agency (NSA), first published in 2001.

Built using the Merkle–Damgård construction (next slide), from a compression function.

Main idea:

• easier to build fixed-size compression

• If you have secure compression function,

    MD gives you a hash function for free

Compression in SHA-2:

Davies-Meyer construction, using specialized

block cipher
Box based on slide by E. Thome

Family of keyed functions

C: 0,1 𝑘 × 0,1 2𝑛 → 0,1 𝑛

with inputs of fixed size 2𝑛 that get ‘compressed’ 
to half their size.

Ck



Hash functions: Merkle-Damgård construction

Intro to crypto - K. HövelmannsSlide based on slide by T. Lange

Start with some 
initiation vector IV

Each step takes 𝑛 message bits as input, together with previous 𝑛-bit output ℎ𝑖−1, and 
compresses these to 𝑛-bit block: ℎ𝑖 = 𝐶 𝑀𝑖−1, ℎ𝑖−1 .

𝑝𝑎𝑑(𝑚): 

• Dissect full message 𝑚 into size-𝑛 blocks 𝑀1, ⋯ 𝑀𝑡 (to fit into compression function 𝐶)

• Use padding in the last block 𝑀𝑡 to fill it up to size 𝑛



Hash functions: Merkle-Damgård construction

Intro to crypto - K. Hövelmanns

Pros of this iterative design:

• Simplifies security reasoning: if compression function C is collision-resistant, then so is H.
• Incremental computation nice for small devices (stream data one block at a time)

Slide based on slide by T. Lange

Start with some 
initiation vector IV

𝑝𝑎𝑑(𝑚): 

• Dissect full message 𝑚 into size-𝑛 blocks 𝑀1, ⋯ 𝑀𝑡 (to fit into compression function 𝐶)

• Use padding in the last block 𝑀𝑡 to fill it up to size 𝑛



Hash functions evolution

Intro to crypto - K. Hövelmanns

SHA-1 (predecessor of SHA-2):

• flaws known since 2005, attacks public since 2017 (https://shattered.io/), 2020 (https://sha-
mbles.github.io/)

• still used for fingerprints (e.g., git) 

SHA-2: 

• currently deemed secure

• widely used in various security applications and protocols

SHA-3: Latest addition to SHA family

• established during NIST standardization effort for hash functions 

• not based on Merkle-Damgård, but on ‘sponges’

• currently deemed secure

https://shattered.io/
https://sha-mbles.github.io/
https://sha-mbles.github.io/


Hash functions good integrity checks?

Intro to crypto - K. Hövelmanns

e.g., Hash = SHA3

Q: Does this ensure the integrity of 𝑀′?

send 𝑀, 𝑡𝑎𝑔 = Hash 𝑀 receive 𝑀′, 𝑡𝑎𝑔′

check that 𝑡𝑎𝑔′ = Hash 𝑀′



Hash functions good integrity checks?

Intro to crypto - K. Hövelmanns

Q: Does this ensure the integrity of 𝑀′?

No: Mr. Krabs can pick his own 𝑐′ and compute 𝑡𝑎𝑔′ for 𝑐′ → keyless integrity checks won’t work!

send 𝑀, 𝑡𝑎𝑔 = Hash 𝑀 receive 𝑀′, 𝑡𝑎𝑔′

check that 𝑡𝑎𝑔′ = Hash 𝑀′
e.g., Hash = SHA3



Message authentication codes

Intro to crypto - K. Hövelmanns

MAC = ‘checksum’, taking key 𝑘 and message 𝑀 (plaintext or ciphertext) to produce authentication tag: 

MAC: 𝐾𝑒𝑦𝑠 × 0,1 𝑚 → 0,1 𝑡

→ MAC can convince Paypal that 𝑀 really comes from Spongebob 

Security goal = UnForgeability: Computing a valid MAC without knowing 𝑘 is hard.

• UF against Chosen Message Attacks (UF-CMA):

    even when given the power to request MAC 𝑘, 𝑀𝑖  on chosen messages 𝑀𝑖,

    computing a valid MAC 𝑘, 𝑀′ for a new a new 𝑀′ ≠ 𝑀𝑖 is hard.



Proposal: Take hash function Hash: 0,1 ∗ → 0,1 𝑛 and set

MAC𝑘 𝑀 = Hash(𝑘, 𝑀)

Hash-based MACs

Intro to crypto - K. Hövelmanns

Q: Hard to produce a valid MAC𝑘 𝑀′  if we can request MAC𝑘 𝑀𝑖  for any 𝑀𝑖 we like?



Length extension attack :

Exploit ‘chaining’ structure of 𝐇𝐚𝐬𝐡: pick message 𝑀 = ℎ𝑒𝑙𝑙𝑜, request 𝑡𝑎𝑔 = Hash(𝑘, ℎ𝑒𝑙𝑙𝑜). 

• View ℎ𝑒𝑙𝑙𝑜 in padded block structure + add something: 𝑀′ =  ℎ𝑒𝑙𝑙|𝑜𝑿𝑿𝑿|𝒅𝒐𝒓𝒌

• Tag for ℎ𝑒𝑙𝑙𝑜𝑋𝑋𝑋𝑑𝑜𝑟𝑘:

Hash 𝑘, ℎ𝑒𝑙𝑙𝑜𝑋𝑋𝑋𝑑𝑜𝑟𝑘 = Hash Hash 𝑘, ℎ𝑒𝑙𝑙𝑜 , 𝑑𝑜𝑟𝑘 = Hash 𝑡𝑎𝑔, 𝑑𝑜𝑟𝑘

Without knowing 𝒌, we can forge a tag for the message 𝒉𝒆𝒍𝒍𝒐𝑿𝑿𝑿𝒅𝒐𝒓𝒌!

Proposal: Take hash function Hash: 0,1 ∗ → 0,1 𝑛 and set

MAC𝑘 𝑀 = Hash(𝑘, 𝑀)

Hash-based MACs

Intro to crypto - K. Hövelmanns



Hash-based MACs: HMAC

Intro to crypto - K. Hövelmanns

Puts the key 𝑘

• at the end to prevent length-extension attacks (you’d need to 
know 𝑑𝑜𝑟𝑘|𝒌),

• but also at the beginning (to deal with collisions).

HMAC𝑘 𝑀 = Hash(𝑘 ⊕ 𝑜𝑝𝑎𝑑, Hash 𝑘 ⊕ 𝑖𝑝𝑎𝑑, 𝑀 )

Mixes up 𝑘 via two different padding strings (𝑖𝑝𝑎𝑑, 𝑜𝑝𝑎𝑑), so 
that the MAC doesn't use the same key twice



Authenticated encryption

Intro to crypto - K. Hövelmanns

We looked at privacy and authenticity separately:

Q: How to achieve both goals at once?

Goal Primitive Security notion

Data privacy Secret-key encryption IND-CPA: 
Hard to tell 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝐾 𝑚1  from 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝐾 𝑚2

Data authenticity 
/ integrity 

Message authentication code UF-CMA:
Hard to forge 𝑀𝐴𝐶 𝑘, 𝑀′ , even when seeing 𝑀𝐴𝐶 𝑘, 𝑀1 ,
𝑀𝐴𝐶 𝑘, 𝑀2 , ⋯



Three common combination approaches

Intro to crypto - K. Hövelmanns

Key 𝑘 =

𝑘𝐸𝑁𝐶 𝑘𝑀𝐴𝐶

Ciphertext 𝑐 Tag 𝑡

Privacy?

Adversaries can detect resent messages 
because MAC is deterministic

• Encrypt-and-MAC

• used in SSH

• not secure per se (SSH uses modifications)

Plaintext MACEncryption



Three common combination approaches

Intro to crypto - K. Hövelmanns

Key 𝑘 =

𝑘𝐸𝑁𝐶 𝑘𝑀𝐴𝐶

Ciphertext 𝑐 Tag 𝑡

Integrity?

Not necessarily: may be able to tweak 𝑐 
into 𝑐′ in a way that its decryption is still the 
same. Then 𝑡 is still valid! 

• Encrypt-and-MAC

• used in SSH

• not secure per se (SSH uses modifications)

Plaintext MACEncryption



Three common combination approaches

Intro to crypto - K. Hövelmanns

• Encrypt-and-MAC

• used in SSH

• not secure per se (SSH uses modifications)

• MAC-then-Encrypt

• used in TLS 1.2

Privacy?

If encryption is IND-CPA secure, 

• resent messages are unnoticeable (despite MAC)

• the MAC-then-encrypt construction is also IND-CPA secure

Key 𝑘 =

𝑘𝐸𝑁𝐶 𝑘𝑀𝐴𝐶

Plaintext MAC

Encryption

Ciphertext 𝑐

Plaintext Tag 𝑡



Three common combination approaches
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• Encrypt-and-MAC

• used in SSH

• not secure per se (SSH uses modifications)

• MAC-then-Encrypt

• used in TLS 1.2

• not secure per se, but can be if done right

Integrity?

Same problem as before!

Key 𝑘 =

𝑘𝐸𝑁𝐶 𝑘𝑀𝐴𝐶

Plaintext MAC

Encryption

Ciphertext 𝑐

Plaintext Tag 𝑡



Three common combination approaches
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• Encrypt-and-MAC

• used in SSH

• not secure per se (SSH uses modifications)

• MAC-then-Encrypt

• used in TLS 1.2

• not secure per se, but can be if done right

• Encrypt-then-MAC

• used in IPSec

• Privacy: IND-CPA if Encryption is IND-CPA

• Integrity: no computing right 𝑡′ for 𝑐′ without 𝑘𝑀𝐴𝐶

Key 𝑘 =

𝑘𝐸𝑁𝐶 𝑘𝑀𝐴𝐶

Ciphertext 𝑐 Tag 𝑡

Encryption

Ciphertext 𝑐

Plaintext

MAC



Proof sketch: Encrypt-then-MAC is IND-CPA

Encrypt-then-MAC 𝑘𝐸𝑁𝐶 , 𝑘𝑀𝐴𝐶 , 𝑚 = 𝑐, 𝑡  with 𝑐 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 𝑘𝐸𝑁𝐶 , 𝑚 and 𝑡 = 𝑀𝐴𝐶 𝑘𝑀𝐴𝐶 , 𝑐

Want to show: if 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 is IND-CPA secure, then so is Encrypt-then-MAC.

𝑚1, 𝑚2

Encrypt-then-MAC 
functionality 

 

IND-CPA attack on 
Encrypt-then-MAC

 

𝑐 = encryption of
either 𝑚1 or 𝑚2

𝑡 = 𝑀𝐴𝐶 𝑘𝑀𝐴𝐶 , 𝑐

𝑐, 𝑡

(𝑐, 𝑡), 
belongs to 
𝑚1/ 𝑚2!

Tool: Turn attack on Encrypt-then-MAC into attack on 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 (‘security reduction’):

Intro to crypto - K. Hövelmanns

• Show: Successful attack on Encrypt-then-MAC gives successful attack on 𝐸𝑛𝑐𝑟𝑦𝑝𝑡
• But 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 is secure. So no successful attack on Encrypt-then-MAC can exist!



Proof sketch: Encrypt-then-MAC is IND-CPA

Encrypt-then-MAC 𝑘𝐸𝑁𝐶 , 𝑘𝑀𝐴𝐶 , 𝑚 = 𝑐, 𝑡  with 𝑐 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 𝑘𝐸𝑁𝐶 , 𝑚 and 𝑡 = 𝑀𝐴𝐶 𝑘𝑀𝐴𝐶 , 𝑐

Want to show: if 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 is IND-CPA secure, then so is Encrypt-then-MAC.

Tool: Turn attack on Encrypt-then-MAC into attack on 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 (‘security reduction’):

𝑚1, 𝑚2

IND-CPA attack on 
Encrypt-then-MAC

 

𝑐, 𝑡

(𝑐, 𝑡), 
belongs to 
𝑚1/ 𝑚2!𝐸𝑛𝑐𝑟𝑦𝑝𝑡 functionality IND-CPA attack on 

𝐸𝑛𝑐𝑟𝑦𝑝𝑡 
 

𝑚1, 𝑚2

𝑐 = encryption of
either 𝑚1 or 𝑚2

𝑐 = encryption of
either 𝑚1 or 𝑚2

𝑡 = 𝑀𝐴𝐶 𝑘𝑀𝐴𝐶 , 𝑐

Pick your own 𝑘𝑀𝐴𝐶

𝑐

• Show: Successful attack on Encrypt-then-MAC gives successful attack on 𝐸𝑛𝑐𝑟𝑦𝑝𝑡
• But 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 is secure. So no successful attack on Encrypt-then-MAC can exist!

𝑐 belongs 
to 𝑚1/ 𝑚2!
(copy Vlad)
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How to share a secret key?
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Public-key encryption (PKE)

Image source: xkcd.com

I should tell Bob 
to sell!
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Public-key encryption (PKE)
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I should tell Bob 
to sell!
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I should tell Bob 
to sell!
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Public-key encryption (PKE)

Image source: xkcd.com

I should tell Bob 
to sell!
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Public-key encryption (PKE)

Image source: xkcd.com Intro to crypto - K. Hövelmanns



Public-key encryption (PKE)
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Public-key encryption (PKE)

Sell!

Image source: xkcd.com Intro to crypto - K. Hövelmanns



Public-key encryption (PKE)
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Public-key encryption (PKE)

Sell!
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Security definitions
What is Bob 

up to?
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Security definitions
What is Bob 

up to?
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Ciphertext indistinguishability
Sell!

„Sell“??
„Hold“??

Image source: xkcd.com Intro to crypto - K. Hövelmanns



Ciphertext indistinguishability games
Sell!

„Sell“??
„Hold“??

Image source: xkcd.com

Left game Right game

Adversary gets public key
Adversary picks two messages m1 and m2

Adversary gets encryption of:

m1 m2

Adversary guesses which game it’s playing

Question: Can we have IND-CPA security if encryption is deterministic*?

Indistinguishability under chosen-plaintext attacks = public key 

version of symmetric-key IND-CPA:

Intro to crypto - K. Hövelmanns

* = encrypting a message m always gives the same result



Ciphertext indistinguishability games
Sell!

„Sell“??
„Hold“??

Image source: xkcd.com

Left game Right game

Adversary gets public key
Adversary picks two messages m1 and m2

Adversary gets encryption of:

m1 m2

Adversary guesses which game it’s playing

Question: Can we have IND-CPA security if encryption is deterministic*?

Indistinguishability under chosen-plaintext attacks = public key 

version of symmetric-key IND-CPA:

Intro to crypto - K. Hövelmanns

No, but encryption could still be hard to invert. * = encrypting a message m always gives the same result



Image source: xkcd.com Post-quantum crypto - Kathrin Hövelmanns

PKE example: Schoolbook RSA

I should tell Bob 
to sell!

How could Alice encrypt ‚sell‘?

RSA: computations with primes!

Schoolbook RSA = simplification of PKCS#1, the 
PKE scheme used in TLS’s predecessor.



Image source: xkcd.com Post-quantum crypto - Kathrin Hövelmanns

PKE example: Schoolbook RSA

I should tell Bob 
to sell!

Pick 2 prime 
numbers: 5,17

Multiply:
5 * 17 = 85
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PKE example: Schoolbook RSA

I should tell Bob 
to sell!

Pick numbers 𝑒, 𝑑 s.th. 
modulo 85, we always 

have 𝑥𝑒 𝑑 = 𝑥
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PKE example: Schoolbook RSA

I should tell Bob 
to sell!

𝑒 = 5, 𝑑 = 13

𝑥 = 2

𝑥𝑒 = 25 = 32

2𝑒 𝑑 = 3213 (large, but has remainder 2!)

Also works for 𝑥 = 3, 𝑥 = 4, 𝑥 = 5, …

Example:

Pick numbers 𝑒, 𝑑 s.th. 
modulo 85, we always 

have 𝑥𝑒 𝑑 = 𝑥
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PKE example: Schoolbook RSA

I should tell Bob 
to sell!

‚Bob: 85, e‘

Store 85, d

Key server Pick numbers 𝑒, 𝑑 s.th. 
modulo 85, we always 

have 𝑥𝑒 𝑑 = 𝑥



Image source: xkcd.com Post-quantum crypto - Kathrin Hövelmanns

PKE example: Schoolbook RSA

Store 85, d

‚Bob: 85, e‘

Key server Pick numbers 𝑒, 𝑑 s.th. 
modulo 85, we always 

have 𝑥𝑒 𝑑 = 𝑥
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PKE example: Schoolbook RSA

Store 85, d

Convert ‚Sell‘ into integer 𝑚 < 85

Compute 𝑚𝑒

Divide by 85, keep the remainder

Use the remainder as
‚Sell!‘

The math:

Lock                   with 85, e.

Use math:

‚Sell!‘
Pick numbers 𝑒, 𝑑 s.th. 
modulo 85, we always 

have 𝑥𝑒 𝑑 = 𝑥
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PKE example: Schoolbook RSA

Store 85, d

Unlocking x

message 𝑚 = 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 𝑚𝑒 𝑑

‚Sell!‘

Pick numbers 𝑒, 𝑑 s.th. 
modulo 85, we always 

have 𝑥𝑒 𝑑 = 𝑥



Security intuition: RSA = trapdoor permutation

Intro to crypto - K. Hövelmanns

Like on the previous slides, we take

• as modulus 𝑁 a prime product.

• 𝑒, 𝑑 s.th. dividing 𝑥𝑒 𝑑 by N always has remainder 𝑥.

𝑥 ↦ 𝑥𝑒 mod 𝑁

RSA𝑒: 1, 2, 3, ⋯ , 𝑁 − 1 → 1, 2, 3, ⋯ , 𝑁 − 1

By choice of 𝑒 and 𝑑, RSA𝑒 is a permutation

So-called trapdoor one-way permutation: Computing 𝑥𝑒 is easy, inverting is

• believed to be hard given only 𝑁 and 𝑒 (public key) ← if we chose the parameters appropriately (!)

• easy given trapdoor 𝑑 (the secret key)

RSA𝑒 may be hard to invert, but is deterministic → no IND-CPA security!

 In practice, we need appropriate padding.



Chosen-ciphertext attacks
Maybe I can trick
Bob‘s notebook…

Image source: xkcd.com Intro to crypto - K. Hövelmanns



Chosen-ciphertext attacks
Maybe I can trick
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Chosen-ciphertext attacks
Maybe I can trick
Bob‘s notebook…
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Chosen-ciphertext attacks
„Sell“!

Image source: xkcd.com

[Bleichenbacher 98]
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Ciphertext indistinguishability games
Sell!

„Sell“??
„Hold“??

Image source: xkcd.com

Left game Right game

Adversary gets public key
Adversary picks two messages m1 and m2

Adversary gets encryption of:

m1 m2

Adversary guesses which game it’s playing

IND-CCA security: Indistinguishability under chosen-ciphertext attacks.

Like IND-CPA:

Difference to IND-CPA: Adversary can additionally request decryptions for any 
ciphertext is chooses…

Wait, can’t this always be won?
Intro to crypto - K. Hövelmanns



Ciphertext indistinguishability games
Sell!

„Sell“??
„Hold“??

Image source: xkcd.com

Left game Right game

Adversary gets public key
Adversary picks two messages m1 and m2

Adversary gets encryption of:

m1 m2

Adversary guesses which game it’s playing

IND-CCA security: Indistinguishability under chosen-ciphertext attacks.

Like IND-CPA:

Difference to IND-CPA: Adversary can additionally request decryptions for any 
ciphertext is chooses… except the provided encryption of m1/m2

Intro to crypto - K. Hövelmanns



Back to what we wanted

Goal: Find a public-key method to securely establish symmetric keys 𝐾𝑠𝑦𝑚.

(Why not just use PKE to send encrypted messages? Efficiency.)

This is called a Key Encapsulation Mechanism (KEM).

Intro to crypto - K. Hövelmanns

Bob‘s
secret key

Bob‘s
public key

𝐾𝑠𝑦𝑚

Image source: xkcd.com



Key Encapsulation Mechanisms (KEMs)

A KEM consists of 3 Algorithms: 

1. KeyGen: Outputs a public/secret key pair (𝑝𝑘, 𝑠𝑘)

2. Encapsulate(𝑝𝑘): Uses 𝑝𝑘 to create 𝐾𝑠𝑦𝑚 and a ciphertext 𝑐

3. Decapsulate(𝑠𝑘, 𝑐): Uses 𝑠𝑘 to recreate 𝐾𝑠𝑦𝑚 from 𝑐

Intro to crypto - K. Hövelmanns

Bob‘s
secret key

Bob‘s
public key

𝐾𝑠𝑦𝑚
𝑐 =

Image source: xkcd.com



KEMs: Security definition

A ciphertext 𝑐 shouldn‘t leak substantial information about 𝐾𝑠𝑦𝑚. 

Intro to crypto - K. Hövelmanns

Bob‘s
secret key

Bob‘s
public key

𝐾𝑠𝑦𝑚
𝑐 =

What is Bob 
up to?

Image source: xkcd.com



Indistinguishability game for KEMs

Image source: xkcd.com

Left game Right game

Adversary gets public key
Adversary gets ciphertext c computed via Encapsulate, together with

The 𝐾𝑠𝑦𝑚 that accompanied c A uniformly random 𝐾𝑠𝑦𝑚

Adversary guesses which game it’s playing

IND-CPA-KEM security: Indistinguishability for KEMs.

What is Bob 
up to?

Intro to crypto - K. Hövelmanns



KEMs in practice: NIST ‘competition’
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Bob‘s
secret key

Bob‘s
public key

𝐾𝑠𝑦𝑚

Fujisaki-Okamoto (FO) :

•  ‘generic’ encryption-to-key-encapsulation recipe

•  = moduleLWE encryption, plugged into FO recipe

Shared approach: PKE from hardness assumption + Fujisaki-Okamoto ‘recipe’



Encrypt 𝑚:
Pick random message 𝑚

Fujisaki-Okamoto KEMs: initial idea
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𝑚

Bob‘s
secret key

Bob‘s
public key

Goal: Find a way to establish symmetric keys 𝐾𝑠𝑦𝑚, securely.

You may use a public-key encryption scheme.

𝑚



Decrypt
𝑚

Encrypt 𝑚:
Pick random message 𝑚

Fujisaki-Okamoto KEMs: initial idea
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𝑚

Image source: xkcd.com

Set 𝐾𝑠𝑦𝑚 ≔ ? ? ?

𝑚

Bob‘s
secret key

Bob‘s
public key

Goal: Find a way to establish symmetric keys 𝐾𝑠𝑦𝑚, securely.

You may use a public-key encryption scheme.

What should Alice and 
Bob pick as 𝐾𝑠𝑦𝑚?

Maybe 𝐾𝑠𝑦𝑚 ≔ 𝑚?
Set 𝐾𝑠𝑦𝑚 ≔ ? ? ?

Breaking the KEM: 

Seeing an encryption of 𝑚,
𝑨’s task is to tell 𝐾𝑠𝑦𝑚 = 𝑚

apart from random.

‘real’ / 
’random’

𝑨



Decrypt
𝑚

Encrypt 𝑚:
Pick random message 𝑚

Fujisaki-Okamoto KEMs: initial idea
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𝑚
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Set 𝐾𝑠𝑦𝑚 ≔ Hash(𝑚)

Set 𝐾𝑠𝑦𝑚 ≔ Hash(𝑚)

𝑚

Bob‘s
secret key

Bob‘s
public key

Goal: Find a way to establish symmetric keys 𝐾𝑠𝑦𝑚, securely.

You may use a public-key encryption scheme and a hash function.



Decrypt
𝑚

Encrypt 𝑚:
Pick random message 𝑚

Fujisaki-Okamoto KEMs: initial idea
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𝑚

Image source: xkcd.com

Set 𝐾𝑠𝑦𝑚 ≔ Hash(𝑚)

Set 𝐾𝑠𝑦𝑚 ≔ Hash(𝑚)

𝑚

Bob‘s
secret key

Bob‘s
public key

Goal: Find a way to establish symmetric keys 𝐾𝑠𝑦𝑚, securely.

You may use a public-key encryption scheme and a hash function.

Q: Is this secure?

Proof heuristic:

Assume (!) Hash outputs are 
unpredictable + unrelated

→ 𝑨 has 0 chance distinguishing 
without computing Hash(𝑚) itself

… for which it needs to know 𝑚
… meaning it inverted encryption!

Breaking the KEM: 

Seeing an encryption of 𝑚,
𝑨’s task is to tell 𝐾𝑠𝑦𝑚 =

Hash(𝑚) apart from random.

‘real’ / 
’random’

𝑨



Security against chosen-ciphertext attacks

Intro to crypto - K. Hövelmanns

Goal: Find a way to establish symmetric keys 𝐾𝑠𝑦𝑚 with chosen-ciphertext security.

→ attacker allowed to request decapsulation for any ciphertext.

Only high-level: slightly alter how the KEM en-/decapsulates:

Altered decapsulation will

• detect malicious ciphertexts 

• punish those by rejecting to return a meaningful key.

→ hard for attacker to request useful decapsulations

It is still being researched today which altering strategy works best!



Take-aways
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PKEs give us privacy (without secret meetings), KEMs make this more efficient. 

We have a ‘cooking recipe’ for turning PKE into a KEM (called Fujisaki-Okamoto).

We used a ‚lego‘ approach very common in crypto:

Simple primitive
(e.g., PKE)

Transformer (e.g., FO)
More complex primitive

(e.g., KEM)

Q: how can we guarantee data authenticity/integrity?



Digital signatures – a bit like MACs:

Image source: xkcd.com Intro to crypto - K. HövelmannsImage source: xkcd.com

to sign message 𝑚:

Use    

to verify

Use

𝑚
𝑚

𝑚 and
Alice‘s

secret key

𝑚

Alice‘s
public key

https://www.google.com/imgres?imgurl=https%3A%2F%2Fstatic.antiquejewellerycompany.com%2F2021%2F09%2F35e8d22c-seal-document.jpg&tbnid=3NiS0eYMG4CyhM&vet=12ahUKEwjQgsbAh_OBAxWyi_0HHWtqAXEQMygBegQIARBP..i&imgrefurl=https%3A%2F%2Fwww.antiquejewellerycompany.com%2Fgold-signet-rings%2F&docid=X1335XJ5qqBxYM&w=2140&h=941&q=signed%20document%20signet&client=firefox-b-d&ved=2ahUKEwjQgsbAh_OBAxWyi_0HHWtqAXEQMygBegQIARBP


Security goal = UnForgeability: Computing a valid signature without knowing secret key s𝑘 
is hard. 

(Attackers will know the public key, though.)

• UF against Chosen Message Attacks (UF-CMA):

 even given the power to request signatures on chosen messages 𝑚𝑖,

 a valid signature for a new message 𝑚′ ≠ 𝑚𝑖 is hard to produce.

Digital signatures: security goals

Intro to crypto - K. Hövelmanns

𝑚 and
Alice‘s

secret key

𝑚

Alice‘s
public key



Digital signatures – a bit like MACs, but not fully:

Image source: xkcd.com Intro to crypto - K. HövelmannsImage source: xkcd.com

Signatures: 𝑚 and
Alice‘s

public key

𝑚

Alice‘s
secret key

𝑚 and MAC 𝑚
Shared

secret key

Shared
secret key

MACs:



Schoolbook RSA signatures
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Remember RSA function: We take

• as modulus 𝑁 a prime product.

• 𝑒, 𝑑 s.th. dividing 𝑥𝑒 𝑑 by N always has remainder 𝑥 → RSA𝑒 is a permutation:

𝑥 ↦ 𝑥𝑒 mod 𝑁

RSA𝑒: 1, 2, 3, ⋯ , 𝑁 − 1 → 1, 2, 3, ⋯ , 𝑁 − 1

Like before, we set: public key = 𝑁, 𝑒 , secret key = 𝑑:

𝑑 𝑁, 𝑒



Schoolbook RSA signatures
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𝑥 ↦ 𝑥𝑒 mod 𝑁

RSA𝑒: 1, 2, 3, ⋯ , 𝑁 − 1 → 1, 2, 3, ⋯ , 𝑁 − 1

𝑁, 𝑒

Sign message 𝑚 < 𝑁:

𝑚 = 𝑚𝑑 mod 𝑁

𝑑

𝑚

Check 𝑠𝑒 = 𝑚 mod 𝑁

Verify                 :𝑚

Remember RSA function: We take

• as modulus 𝑁 a prime product.

• 𝑒, 𝑑 s.th. dividing 𝑥𝑒 𝑑 by N always has remainder 𝑥 → RSA𝑒 is a permutation:

𝑚 and 𝑠 =



Schoolbook RSA signatures
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Remember RSA function: We take

• as modulus 𝑁 a prime product.

• 𝑒, 𝑑 s.th. dividing 𝑥𝑒 𝑑 by N always has remainder 𝑥 → RSA𝑒 is a permutation:

𝑥 ↦ 𝑥𝑒 mod 𝑁

RSA𝑒: 1, 2, 3, ⋯ , 𝑁 − 1 → 1, 2, 3, ⋯ , 𝑁 − 1

𝑁, 𝑒

Sign message 𝑚 < 𝑁:

𝑚 = 𝑚𝑑 mod 𝑁

𝑑

𝑚

Verify                 :𝑚

Can Mr. Krabs - only knowing the public key 𝑁, 𝑒, but not 𝑑 – sign a 
message such that Bob accepts the signature?)

Q: Is this secure?

Check 𝑠𝑒 = 𝑚 mod 𝑁

𝑚 and 𝑠 =



Schoolbook RSA signatures
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Remember RSA function: We take

• as modulus 𝑁 a prime product.

• 𝑒, 𝑑 s.th. dividing 𝑥𝑒 𝑑 by N always has remainder 𝑥 → RSA𝑒 is a permutation:

𝑥 ↦ 𝑥𝑒 mod 𝑁

RSA𝑒: 1, 2, 3, ⋯ , 𝑁 − 1 → 1, 2, 3, ⋯ , 𝑁 − 1

𝑁, 𝑒

Sign message 𝑚 < 𝑁:

𝑚 = 𝑚𝑑 mod 𝑁

𝑑

𝑚

Verify                 :𝑚

Q: Is this secure?

Key-only forgery: Pick arbitrary ‘signature’ 𝑠, set 𝑚 = 𝑠𝑒 mod 𝑁

→ 𝑠 is a valid signature for 𝑚 that will be accepted by Bob!

In practice, however, 𝑚 might look unconvincing to the recipient.

Check 𝑠𝑒 = 𝑚 mod 𝑁

𝑚 and 𝑠 =

Can Mr. Krabs - only knowing the public key 𝑁, 𝑒, but not 𝑑 – sign a 
message such that Bob accepts the signature?)
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Remember RSA function: We take

• as modulus 𝑁 a prime product.

• 𝑒, 𝑑 s.th. dividing 𝑥𝑒 𝑑 by N always has remainder 𝑥 → RSA𝑒 is a permutation:

𝑥 ↦ 𝑥𝑒 mod 𝑁

RSA𝑒: 1, 2, 3, ⋯ , 𝑁 − 1 → 1, 2, 3, ⋯ , 𝑁 − 1

𝑁, 𝑒

Sign message 𝑚 < 𝑁:

𝑚 = 𝑚𝑑 mod 𝑁

𝑑

𝑚
𝑠 =

Verify                 :𝑚

Check 𝑠𝑒 = 𝑚 mod 𝑁

Q: Is this secure?

Targetted forgery via signature requests: Choose target message 𝑚∗.

We’ll exploit the multiplicative property of the RSA function (‘verification 
preserves multiplication’):

𝑠1 ⋅ 𝑠2
𝑒 = 𝑠1

𝑒 ⋅ 𝑠2
𝑒 mod 𝑁

Attack:
• Pick arbitrary message 𝑚1, and 𝑚1

−1 such that 𝑚1𝑚1
−1 mod 𝑁 = 1.

• Request signature 𝑠1 for 𝑚1: you get 𝑠1 = 𝑚1
𝑑

       and signature 𝑠2 for 𝑚2 = 𝑚1
−1 ⋅ 𝑚∗: you get 𝑠2 = 𝑚2

𝑑 

Sign 𝑚∗ with s∗ = 𝑠1 ⋅ 𝑠2 → Bob accepts since 𝑠∗ 𝑒 = 𝑚∗ mod 𝑁 :

𝑠∗ 𝑒 = 𝑠1
𝑒 ⋅ 𝑠2

𝑒 = 𝑚1 ⋅ 𝑚2 = 𝑚1 ⋅ 𝑚1
−1 ⋅ 𝑚∗ = 𝑚∗ mod 𝑁

Can Mr. Krabs - only knowing the public key 𝑁, 𝑒, but not 𝑑 – sign a 
message such that Bob accepts the signature?)
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Remember RSA function: We take

• as modulus 𝑁 a prime product.

• 𝑒, 𝑑 s.th. dividing 𝑥𝑒 𝑑 by N always has remainder 𝑥 → RSA𝑒 is a permutation:

𝑥 ↦ 𝑥𝑒 mod 𝑁

RSA𝑒: 1, 2, 3, ⋯ , 𝑁 − 1 → 1, 2, 3, ⋯ , 𝑁 − 1

𝑁, 𝑒

Sign message 𝑚 < 𝑁:

𝑚 = Hash 𝑚 𝑑 mod 𝑁

𝑑

𝑚

Verify                 :𝑚

Q: Can we tweak this so it becomes secure?

Idea: Pick hash function Hash: 0,1 ∗ → 1, 2, 3, ⋯ , 𝑁 − 1 , sign messages
𝑚 ∈ 0,1 ∗ by applying RSA signature approach to Hash 𝑚 .

Advantage 1: We can now sign arbitrary-length messages. 
Advantage 2: Targetted attack a lot harder: need to find 𝑚, 𝑚1, 𝑚2 such that 

Hash 𝑚 = Hash 𝑚1 ⋅ Hash 𝑚2 mod 𝑁

𝑠𝑒 = Hash 𝑚 mod 𝑁?

𝑚 and 𝑠 =



Take trapdoor one-way permutation Π (like the RSA function): computing

• Π(𝑝𝑘, 𝑥) is easy (e.g., 𝑥𝑒)

• Π−1(𝑠𝑘, 𝑦) is (e.g., 𝑦𝑑)

• hard when not knowing 𝑠𝑘

• easy when knowing 𝑠𝑘

Π easy

Verify              :

Π(𝑝𝑘, 𝑠) = Hash 𝑚 ?Sign message 𝑚:

= Π−1 𝑠𝑘, Hash 𝑚

Abstraction of tweak : full domain hash (FDH)
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𝑚

Alice‘s
secret key

Alice‘s
public key

𝑚 and 𝑠 =

M

X Y

Π−1

not easy without 𝑠𝑘

Hash



Approach based on identification schemes

HAETAE – provable securityImage source: xkcd.com

Alice‘s
secret key

Alice‘s
public key

Hey Alice, is
this really you?

https://www.google.com/imgres?imgurl=https%3A%2F%2Fstatic.antiquejewellerycompany.com%2F2021%2F09%2F35e8d22c-seal-document.jpg&tbnid=3NiS0eYMG4CyhM&vet=12ahUKEwjQgsbAh_OBAxWyi_0HHWtqAXEQMygBegQIARBP..i&imgrefurl=https%3A%2F%2Fwww.antiquejewellerycompany.com%2Fgold-signet-rings%2F&docid=X1335XJ5qqBxYM&w=2140&h=941&q=signed%20document%20signet&client=firefox-b-d&ved=2ahUKEwjQgsbAh_OBAxWyi_0HHWtqAXEQMygBegQIARBP
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Alice‘s
secret key

Alice‘s
public key

𝑐ℎ𝑎𝑙

Pick challenge 𝑐ℎ𝑎𝑙

https://www.google.com/imgres?imgurl=https%3A%2F%2Fstatic.antiquejewellerycompany.com%2F2021%2F09%2F35e8d22c-seal-document.jpg&tbnid=3NiS0eYMG4CyhM&vet=12ahUKEwjQgsbAh_OBAxWyi_0HHWtqAXEQMygBegQIARBP..i&imgrefurl=https%3A%2F%2Fwww.antiquejewellerycompany.com%2Fgold-signet-rings%2F&docid=X1335XJ5qqBxYM&w=2140&h=941&q=signed%20document%20signet&client=firefox-b-d&ved=2ahUKEwjQgsbAh_OBAxWyi_0HHWtqAXEQMygBegQIARBP
https://www.google.com/imgres?imgurl=https%3A%2F%2Fmedia.istockphoto.com%2Fid%2F1336400835%2Fnl%2Fvector%2Fcartoon-dice-vector-illustration-on-white-background.jpg%3Fs%3D612x612%26w%3D0%26k%3D20%26c%3DYT5MlRIA6lVsKf7vVHdEOboLLtRXSbW_QChGHrN30AY%3D&tbnid=VHFMxdaxsGx_aM&vet=12ahUKEwj3xIzai_OBAxUFUeUKHcOhDHQQMygAegQIARBS..i&imgrefurl=https%3A%2F%2Fwww.istockphoto.com%2Fnl%2Fvector%2Fcartoon-dice-vector-illustration-on-white-background-gm1336400835-417673530&docid=ixb1lrThoVpqOM&w=612&h=612&q=dice&client=firefox-b-d&ved=2ahUKEwj3xIzai_OBAxUFUeUKHcOhDHQQMygAegQIARBS
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Alice‘s
secret key

𝑐ℎ𝑎𝑙

to generate response 𝑟𝑒𝑠𝑝 
from 𝑐ℎ𝑎𝑙 and 𝑐𝑜𝑚

𝑟𝑒𝑠𝑝

Use    

Alice‘s
public key

to verify 𝑟𝑒𝑠𝑝

Use
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𝑐ℎ𝑎𝑙
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Alice‘s
secret key

= 𝑐𝑜𝑚, 𝑟𝑒𝑠𝑝
𝑚

Alice‘s
public key

to verify 𝑟𝑒𝑠𝑝

Use
generate 𝑟𝑒𝑠𝑝 from 𝑐𝑜𝑚 

and 𝑐ℎ𝑎𝑙 ≔ Hash(𝑚, 𝑐𝑜𝑚)

Use          to

Sign 𝑚 by tying identity proof
to 𝑚: 



Take-aways
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We have a ‘cooking recipe’ for building signatures from a one-way trapdoor function

We again used the ‘lego‘ approach:

Simpler primitive
(RSA function)

Transformer (FDH)
More complex primitive

(signing algorithm)

Q: how would we prove security against quantum attackers? (next talk)

There are also other ‘recipes’ you will probably encounter during this week

All known recipes require some hardness assumption (e.g., ‘inverting 𝑥𝑒 is hard’)



… Damn.

Post-quantum crypto

Intro to crypto - K. Hövelmanns

RSA Problem that (hopefully) is hard even for quantum computers

Finding a shortest vector in a lattice (Thu)

Attacking hash functions (Wed)

Solving multi-variable polynomial equations (Fri)

1000 𝑥 + 𝑥2 + 423 𝑦2𝑧 = 1

655 𝑦 + 53 𝑦𝑧 = 13

29 𝑥 + 3 𝑦2 + 53 𝑥𝑧2 = 4

Decoding error-correcting codes (Wed)



break

If time permits: random oracle model (ROM)

Provable security and the quantum ROM - K. Hövelmanns

Security 
game G

for design X

A

X-instance

Oracle for 𝑓

𝑥 𝑦

Heuristic: Replace hash function

Hash: 0,1 𝑛 → 0,1 𝑚

with ‘oracle box’ for truly random

𝑓: 0,1 𝑛 → 0,1 𝑚

𝑥

𝑦



If time permits: random oracle model (ROM)

Provable security and the quantum ROM - K. Hövelmanns

A

𝑥 𝑦

A

Reduction B
Oracle for 𝑓

Use problem 
instance

to simulate 
security game break

P-instance

Solution for P-instance

Heuristic: Replace hash function

Hash: 0,1 𝑛 → 0,1 𝑚

with ‘oracle box’ for truly random

𝑓: 0,1 𝑛 → 0,1 𝑚



Perks of the random oracle model

Provable security and the quantum ROM - K. Hövelmanns

• Unpredictability of 𝑓 𝑥

• ‘Tricking A’: Picking the 𝑦s smartly 

enough, B can

a) trick A into solving B’s problem

b) feign secret knowledge it would - in 

principle - need for A’s security game

A

𝑥 𝑦

A

Reduction B
Oracle for 𝑓

Use problem 
instance

to simulate 
security game break

P-instance

Solution for P-instance



𝑥′

Practice example: ROs as one-way functions

Provable security and the quantum ROM - K. Hövelmanns

A

𝑦∗

Oracle for 𝑓: 0,1 𝑛 → 0,1 𝑛

𝑥 𝑦
One-way game for RO 𝑓

Pick random 𝑥∗

Set 𝑦∗ ≔ 𝑓 𝑥∗

A wins if 𝑓 𝑥′ = 𝑦∗

Short DIY break:

Try to reason why it is hard for A to win

the one-way game if 𝑛 is large enough!



𝑥′

Practice example: ROs as one-way functions

Provable security and the quantum ROM - K. Hövelmanns

Say A makes q many queries to f 

• Per query 𝑥 ≠ 𝑥∗: f returns 𝑦∗ with probability
1

2𝑛

• A queries f on 𝑥∗ with probability ⪅
𝑞

2𝑛 

• If no query yields 𝑦∗: f (x’)= 𝑦∗ with probability
1

2𝑛

Pr 𝐴 𝑤𝑖𝑛𝑠 ⪅
𝑞

2𝑛
+

𝑞

2𝑛
+

1

2𝑛

A

𝑦∗

Oracle for 𝑓: 0,1 𝑛 → 0,1 𝑛

𝑥 𝑦
One-way game for RO 𝑓

Pick random 𝑥∗

Set 𝑦∗ ≔ 𝑓 𝑥∗

A wins if 𝑓 𝑥′ = 𝑦∗



This heuristic seems weird.

Provable security and the quantum ROM - K. Hövelmanns

  No theoretical justification 

Counterexamples: designs that are

• secure in the ROM, but

• insecure when instantiating RO with any hash function

  So far: good track record for ‘natural’ schemes

Helps identify design bugs
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