
Bringing PQC into practice

Bas Westerbaan, Cloudflare Research
QSI Spring School, Porto, March 15th, 2024

This lecture

1. ✅ Design post-quantum algorithm mathematically
2. ❔ [...] ⬅ topic of this lecture.
3. ⚛ Deploy PQC worldwide

But first, for your context

About Cloudflare
We run a global network spanning 310 cities in over 120
countries.
Started of as a CDN and DDoS mitigation company, we now
offer many more services, including
● 1.1.1.1, public DNS resolver
● Workers, serverless compute
● SASE, to protect corporate networks
We serve nearly 20% of all websites and
process 55 million HTTP requests per second.
Approximately 30% of Fortune 1000 are paying customers.

https://w3techs.com/technologies/overview/proxy/all

Building a better Internet
Cloudflare cares deeply about a private, secure and fast
Internet, helping design, and adopt, among others:
● Free SSL (2014), TLS 1.3 and QUIC
● DNS-over-HTTPS
● Private Relay / OHTTP
● Encrypted ClientHello
And, the topic today:
● Migrating to post-quantum

cryptography.

1. ✅ Design post-quantum algorithm mathematically
2. Cryptography engineering and a lot more research
3. ⚛ Deploy PQC worldwide

There is a lot involved in bringing cryptography into practice. In
this short lecture we can only touch upon a few topics briefly.

What is involved

Fast, secure, and correct implementation.
Standardisation: fix wire format, APIs, integration into
protocols, and other menial details.
Work around protocol constraints, and buggy software /
hardware.
(...)
As we’ll see: these are not separate steps. All have been happening
at the same time, are mostly at odds with each other, and feed
back into the design.

Fast implementation

“[...] saving a single hash in TLS saves compute time worth millions
of dollars/CO2 emissions/energy [...]”

— Sophie Schmieg, Google, source.

https://mailarchive.ietf.org/arch/msg/cfrg/FhiZG7aeQUzrwSBXQL9CJC6hg3Q/

Example: polynomial product

In many lattice-based cryptosystems, we need to compute the
product s·t of two polynomials s, t over GF(q) modulo xn+1.
(For instance, in Kyber q=3329 and n=256.)
The schoolbook method requires n2 modular multiplications.
For instance, for n=3, we have x3=-1, and so:
s·t = s0t0 - s1t2 - s2t1+

(s0t1 + s1t0 - s2t2) x +
(s0t2 + s1t1 + s0t2) x2

Schoolbook

Not fast, but clearly correct.
(⚠ Don’t write cryptography in pure Python.)

Schoolbook

Not fast, but clearly correct.

Schoolbook

Not fast, but clearly correct. Is the implementation safe?
(... assuming this was written in Rust or C.)

Safe?

On most platforms, the runtime of modulus / division depends
on the arguments. “Not constant-time”. If s or t is secret, this
could be problematic. (For recent similar issue, see KyberSlash.)

https://kyberslash.cr.yp.to/

Barrett modular reduction

For q=3329, we can compute x mod q for 0 ≤ x < 216 as

Barrett modular reduction

For q=3329, we can compute x mod q for 0 ≤ x < 216 as

We have x mod q = x - ⌊x/q⌋ q for any x and ⌊x/2a⌋ = x » a.
For q=3329, we have 1/q ≈ 20159 / 226.
For 0 ≤ x < 153,133 the error disappears in the floor.

Barrett modular reduction

For q=3329, we can compute x mod q for 0 ≤ x < 216 as

⚠ On many, but not every platform, multiplication runs in
constant time.
Typically Barrett reduction is faster than native division, thus…

Many compilers know about Barrett

This is about the speed
improvement — compilers
typically don’t care about
constant-time code.

Don’t rely on the compiler!

Luckily compilers don’t replace
Barrett reduction by divisions,
yet…
To be 100% sure, you need to
write crypto by hand in
assembly, for a particular
platform.

An aside: other timing side-channels

Because of processor memory and instruction caches, we can’t
index (eg. array[secret]) or branch (eg. 1 if secret < 0
else 0) on secret values.
The latter can be done in constant-time, on a platform with
two’s complement integers, for int32_t in C as:

(uint32_t)secret >> 31

(Fun exercise: how would you do the former uint32_t[8] ?)

Schoolbook

Still slow: 2n2 multiplications.

Lazy reduction

Move modular reduction to the end. Saves n(n-1)
multiplications. ⚠ We need to be mindful of integer overflow.

We got to go faster
There are many techniques for faster polynomial multiplication.
One particularly popular method is the number theoretic
transform (NTT), which works best for specific q and rings.
Kyber, Dilithium, and Falcon choose their polynomial rings so
that they can use NTT-style speed ups.

NTT (1)
q is chosen such that 256 | q - 1, which ensures there is a 256th
primitive root of unity ζ. That is: ζ256 = 1, and ζ128 ≠ 1. So ζ128 =
-1. That allows us to split xn+1 completely:

NTT (2)
This allows us to factor our ring by the Chinese remainder thm:

Multiplication on the right is fast: just componentwise.
The isomorphism is given by evaluating on odds powers of ζ:

Computing it this way is slow, but…

NTT (3)
We can evaluate the isomorphism step-by-step:

The map is given by the picture on the left
(for n=32), where each vertical line
represents the map

(a, b) → (a+ζrb, a-ζrb)
for the appropriate r.
These are called Cooley–Tukey butterflies.

NTT (4)

log2 n layers.
Thus 3n log2 n
multiplications.
We can reduce to
essentially
n log2 n by lazy
reductions.

NTT (5), putting it together

Much faster: approximately 2 n log2 n multiplications.
How do we know it’s correct?

Got to go even faster

Most modern CPU have single-instruction/multiple-data (SIMD)
registers, such as AVX2 on x64, and NEON on ARM.
On AVX2, there are sixteen 256-bit registers, that can be used in
different ways. For instance: 4 times u64, or 16 times u16.
The VPMULLW instruction pairwise multiplies the sixteen u16 in
two given SIMD registers.

Intrinsics

Some languages (eg. Rust, C, Zig) make it easy to use SIMD.

Accelerating NTT with SIMD

With AVX2 we can compute 16 butterflies for
q=3329 at the same time. The hard part: the
right coefficients have to be in the right SIMD
registers! With approach on the right we can
only use full potential for first layer.
The trick is to do some clever shuffling in
between.

(Part of the) AVX2 NTT for Kyber (source)

https://raw.githubusercontent.com/wiki/cloudflare/circl/images/kyber-ntt-avx2.svg

(... 556 more instructions)

With handcrafted assembly we can
make the best use of the AVX2
registers.
This makes Kyber NTT (n=256) on x64
with AVX2 very fast: ~200 cycles!
But is the assembly correct?

Computer-verified proof

At the moment, we’ve deployed a relatively slow (non SIMD)
implementation of Kyber, as we’re worried about mistakes.
We’re looking into deploying an AVX2-optimised
implementation by the Formosa team (who are meeting on the
9th floor now!) that comes with a computer-verified proof of
correctness.

https://formosa-crypto.org/projects/libjade

Ok, assume we got perfect implementations.

Now just ship it? 🚢

Changing the Internet / WebPKI is hard
● Very diverse. Many different users / stakeholders with

varying (performance) constraints and update cycles.
We can’t assume everyone is on fiber, or uses modern CPU, can
store state, uses AVX2, or can update at all.

● Protocol ossification. Despite being designed to be
upgradeable, any flexibility that isn’t used in practice, is
probably broken, because of faulty implementations.

TLS 1.3 migration
Early versions of TLS 1.3 were
completely undeployable
because of protocol ossification.
After six more years of testing
and adding workarounds, the
final version of TLS 1.3 is a
success, used by over 90% of
our visitors.

Cloudflare Radar

https://blog.cloudflare.com/why-tls-1-3-isnt-in-browsers-yet/
https://radar.cloudflare.com/adoption-and-usage

TLS 1.3 handshake

There will be two post-quantum migrations.

1. Key agreement 🤝
Communication can be recorded today and decrypted in
the future. We need to upgrade as soon as possible.

2. Signatures 🖋
Less urgent: need to be replaced before the arrival of
cryptographically-relevant quantum computers.

3.

Key agreement 🤝
Urgent, and the easier one.

Feasibility study with Chrome
In 2019 we performed large-scale test of
PQ kex with Chrome. Takeaways:
● Performance of lattice-based KEMs

is acceptable.
● Significant amount of broken clients

because of protocol ossification (split
ClientHello.)

Google has been working with vendors to
fix issues.

X25519. CECPQ2 is X25519+NTRU-HRSS (lattice) and
CECPQ2b is X25519+SIKE (isogenies, broken)

https://blog.cloudflare.com/the-tls-post-quantum-experiment/

Early deployments
2022 coordinating at IETF, we
enabled post-quantum key
agreement (~20% Internet.)
In 2023 Google enabled
server-side as well.
Browsers:
● Chrome. Enabled for 10%

of all traffic.
● Firefox. Opt-in in nightly.

https://blog.cloudflare.com/post-quantum-for-all/
https://datatracker.ietf.org/doc/draft-tls-westerbaan-xyber768d00/
https://datatracker.ietf.org/doc/draft-tls-westerbaan-xyber768d00/

Post-quantum to origins

We enabled support for PQ key agreement to origins (3).
0.5% of origins support PQ at time of writing.
0.34% incompatible when sending keyshare immediately.
Interestingly, mostly broken HelloRetryRequest flow. We’ve
reached out to customers to help remediate.

https://blog.cloudflare.com/post-quantum-to-origins/

Promising early results
As of writing, no hard failures preventing further roll-out
identified by Chrome🤞.
It is likely that we will see double-digit percentage
post-quantum key-agreement later this year.

Not just a technical challenge
In 2023 we’ve also commenced migrating our internal
connections to post-quantum key agreement.
Huge effort: every engineering team created inventory of
cryptography used, risks, and planned/executed migration.
Majority of our internal connections are secured (prioritizing
sensitive connections), but a long fat tail remains.
On the upside: we did not encounter any performance or
compatibility issues.

https://blog.cloudflare.com/post-quantum-cryptography-ga
https://blog.cloudflare.com/post-quantum-cryptography-ga

Key agreement 🤝
Urgent and the easier of the two to deploy. We’re
on track for ~30% client-side deployment in 2024.
That took 5 years.

Signatures 🖋
Less urgent, but much more challenging.

#1, many more parties involved:
Cryptography library developers, browsers, certificate
authorities, HSM manufacturers, CT logs, and every server
admin that cobbled together a PKI script.

#2, there is no all-round great PQ signature

Online signing — Falcon’s Achilles’ heel
● For fast signing, Falcon requires a floating-point unit (FPU).
● We do not have enough experience running cryptography

securely (constant-time) on the FPU.
● On commodity hardware, Falcon should not be used when

signature creation can be timed, eg.
TLS handshake.

● Not a problem for signature verification.

This function from Falcon
as submitted to round 3 is
not constant-time on
ARMv7 as claimed.
Can you spot the error?

#3, there are many signatures on the Web
● Root on intermediate
● Intermediate on leaf
● Leaf on handshake
● Two SCTs for Certificate Transparency
● An OCSP staple

Typically 6 signatures
and 2 public keys
when visiting a website.
(And we’re not even counting DNSSEC.)

Using only Dilithium2

+17,144 bytes
Using Dilithium2 for the TLS handshake and Falcon for the rest

+7,959 bytes
Is that too much? We had a look…

blog.cloudflare.com/sizing-up-post-quantum-signatures, 2021

https://blog.cloudflare.com/sizing-up-post-quantum-signatures/

And, of course…

Protocol ossification
Bump in missing requests
suggests some clients or
middleboxes do not like
certificate chains longer
than 10kB and 30kB.
This is problematic for
composite certificates.
Instead configure servers for
multiple separate
certificates and let TLS
negotiate the one to send.

Not great, not terrible
It probably won’t break the Web, but the performance
impact will delay adoption.

NIST signature on-ramp
NIST took notice and has called for new signature
schemes to be submitted.
I will cover these later on.
The short of it: there are some very promising submissions, but
their security is as of yet unclear.
Thus, we cannot assume that a new post-quantum signature
will solve our issues.

https://csrc.nist.gov/projects/pqc-dig-sig
https://csrc.nist.gov/projects/pqc-dig-sig

In the meantime
There are small and larger changes
possible to the protocols to reduce the number of signatures.
● Leave out intermediate certificates.
● Use key agreement for authentication.
● Overhaul WebPKI, eg. Merkle Tree Certificates.
I will discuss these in more depth later on.

Signatures 🖋
Less urgent, but path is unclear. Real risk we will start
migrating too late.

That’s not all: the Internet isn’t just TLS
There is much more cryptography out there with their own
unique challenges.
● DNSSEC with its harder size constraints
● Research into post-quantum privacy enhancing techniques,

eg. anonymous credentials, is in the early stages.

Questions so far?

Coping with post-quantum signatures

Recall: there are many signatures on the Web
● Root on intermediate
● Intermediate on leaf
● Leaf on handshake
● Two SCTs for Certificate Transparency
● An OCSP staple

Typically 6 signatures
and 2 public keys
when visiting a website.

Not all signatures are equal
The TLS handshake signature is created on-the-fly (online) and
is transmitted together with its public key.
The handshake signature benefits from balanced
signing/verification time, and balanced public key/signature size.
The other signatures are offline, and can trade signing time for
better verification time. The intermediate’s signatures are sent
with their corresponding public key, and the rest (SCT/OCSP
staple) without public key.
The former benefits from balanced signature/public key size. For
the latter it’s beneficial to trade public key and signature sizes.

Sizes (bytes) CPU time (lower is better)

PQ Public key Signature Signing Verification

Standardised Ed25519 ❌ 32 64 1 (baseline) 1 (baseline)

RSA-2048 ❌ 256 256 70 0.3

Hash-based XMSS* w=256 h=20 n=16 ✅ 32 608 6 ⚠ 2

NIST drafts Dilithium2 ✅ 1,312 2,420 4.8 0.5

Falcon512 ✅ 897 666 8 ⚠ 0.5

SPHINCS+128s ✅ 32 7,856 8,000 2.8

SPHINCS+128f ✅ 32 17,088 550 7

Sample from
signatures
onramp

MAYOone ✅ 1,168 321 4.7 0.3

MAYOtwo ✅ 5,488 180 5 0.2

SQISign I ✅ 64 177 60,000 500

UOV Is-pkc ✅ 66,576 96 2.5 2

HAWK512 ✅ 1,024 555 2 1

Concrete instances with NIST drafts
Using Dilithium2 for everything adds 17kB.

Using Dilithium2 for handshake and Falcon512 for the rest, adds 8kB.
⚠ Fast and secure Falcon512 signing is hard to implement.

Using SPHINCS+-128 for everything adds 50kB. Order of magnitude
worse signing time than RSA. Most conservative choice.

Stateful hash-based signatures
Using XMSS(MT) with w=256, n=128, two subtrees for SCTs and
intermediates, and single tree for the rest, and Dilithium2 for
handshake signature, adds 8kB.

⚠ n=128 and w=256 instances are not standardised.

⚠ We lose non-repudiation.

⚠ Large precomputations/storage required for efficient signing.

⚠ Challenging to keep state.

Concrete instances with on-ramp candidates
Using MAYO one for leaf/intermediate, and two for the rest, adds
3.3kB. Signing time between ECC/RSA. ⚠ Needs more cryptanalysis.

Using UOV Is-pkc for root and SCTs, and HAWK512 for the rest, adds
3.2kB. 66kB for stored UOV public keys. HAWK relies on Falcon
assumptions and then some more.

Using UOV ls-pkc again, but combined with Dilithium2. Adds 7.4kB.
Relatively conservative choice.

SQIsign only. Adds 0.5kB. Signing time >1s (not constant-time), and
verification time >35ms. 🐢

blog.cloudflare.com/sizing-up-post-quantum-signatures, 2021

https://blog.cloudflare.com/sizing-up-post-quantum-signatures/

Leaving out intermediates
Most browsers ship intermediate certificates, so why
bother sending them?

Leaving out intermediates

Three proposals:

● 2019, draft-kampanakis-tls-scas, send flag to indicate server
should only return leaf. Simple but error prone.

● 2022, draft-ietf-tls-cert-abridge, replaces intermediates with
identifiers from yearly updated central list from CCADB. Client
sends version of latest list. Also proposes tailored compression.

● 2023, draft-davidben-tls-trust-expr. Simplified: client sends which
trust store it uses, and the version it has. CA adds as metadata to
a certificate, in which trust store (version) it’s included. Trust
stores can then add intermediates as roots.

https://datatracker.ietf.org/doc/draft-kampanakis-tls-scas-latest/
https://datatracker.ietf.org/doc/draft-ietf-tls-cert-abridge/
https://datatracker.ietf.org/doc/draft-davidben-tls-trust-expr/

Gains leaving out intermediates: median 3kB

From Dennis Jackson’s draft-ietf-tls-cert-abridge-00

https://datatracker.ietf.org/doc/draft-ietf-tls-cert-abridge/00/

KEMTLS (aka. Authkem)
Use KEM instead of signature for handshake
authentication.

https://datatracker.ietf.org/doc/draft-celi-wiggers-tls-authkem/

KEMTLS
Replacing Dilithium2 handshake signature with Kyber512 saves
2.9kB server → client, but adds 768B in the second flight client
→ server.
At the moment gains are modest. Interesting for embedded, to
reduce code size by eliminating primitive. Client authentication
with KEM requires extra roundtrip.
Large change to TLS. Subtle changes in security guarantees. We
have a formal analysis.
Proof-of-possession unclear. Could be done with lattice-based
zero-knowledge proofs or challenge-response.

https://eprint.iacr.org/2022/1111

Merkle Tree Certificates

Pain-points of current WebPKI

OCSP is expensive to run, whereas majority of users don’t use
it, but rely on CRL instead (via eg. CRLite).
Too many signatures.
Certificate Transparency is difficult to run.
Many sharp edges: path building, punycode, constraint
validation, etc.
(Domain control validation is imperfect — not addressed.)

Changing the WebPKI

With the post-quantum migration, the marginal cost of
changing the WebPKI is lower than ever.
There is a huge design space, with many trade offs.
Merkle Tree Certificates (MTC) is a concrete, ambitious, but
early draft. We’re looking for feedback on the design and
general direction.
Not a complete replacement for current WebPKI: it’s an
optimisation of the common case and falls back to X.509+CT.

https://datatracker.ietf.org/doc/draft-davidben-tls-merkle-tree-certs/

Merkle Tree Certificates in short (1)

On a set time, eg. every hour, the CA publishes:
● The batch of assertions they certify. All assertions in a batch

are implicitly valid for the same window, eg. 14 days. For
each batch, the CA builds a Merkle tree on top.

● A signature on the roots of all currently valid batches.
Trust Services (eg. browser vendors) regularly pull the latest
batches and window signatures from CAs, verify them for
consistently, and only send the Merkle tree roots to the
browsers.

Merkle Tree Certificates in short (2)

A Merke tree certificate is an assertion together with a Merkle
authentication path to the root of the batch.
A server would install three certificates: two Merkle tree
certificates 7 days apart, and a fall back X509 certificate.
When connecting to a server, the client sends the sequence
number of the latest batches it knows of each MTC CA.
If the client is sufficiently up-to-date, the server can return one
of the Merkle tree certs, and otherwise will fall back to X.509.

Merkle Tree Certificates sizes

There are currently 1 billion unexpired certificates in CT.
If reissued every 7 days by one MTC CA, we’d have batches of 6
million assertions.
That amounts to authentication paths of 736 bytes, and with a
Dilithium2 public key a typical Merkle tree certificate will be well
below 2.5kB, smaller than only the median compressed
classical intermediate certificate of 3.2kB.
Try MTC for yourself: PoC MTC CA.

https://github.com/bwesterb/mtc

Wrapping up

We saw several different approaches to cope with large
post-quantum signatures, from simple to ambitious.
There are still many unknowns: among others, compliance
requirements; cryptanalytic breakthroughs; ecosystem
ossification; stakeholder constraints; etc.
Which approach to take? I’d say it’s good to have multiple pots
on the stove.

Thank you, questions?

References
● pq.cloudflareresearch.com
● Follow along at the IETF
● Check out our recent blogpost the state of the post-quantum

Internet, and Google’s take.
● Reach out: ask-research@cloudflare.com

https://pq.cloudflareresearch.com
https://www.ietf.org/mailman/listinfo/Pqc
https://blog.cloudflare.com/pq-2024
https://blog.cloudflare.com/pq-2024
https://bughunters.google.com/blog/5108747984306176/google-s-threat-model-for-post-quantum-cryptography
mailto:ask-research@cloudflare.com

