Lattice cryptography and cryptanalysis

Wessel van Woerden (Université de Bordeaux, IMB, Inria).
université ${ }^{\text {de }}$ BORDEAUX

Plan

```
Part I
Lattice theory
- Lattices
- Hard problems
Cryptography
- Trapdoor bases
- Encryption, Signature
Cryptanalysis
- Lattice Sieving
- Basis Reduction
```


Part I

Lattice theory

- Lattices
- Hard problems

Cryptography

- Trapdoor bases
- Encryption, Signature

Cryptanalysis

- Lattice Sieving
- Basis Reduction

Part II

Lattices used in cryptography

- SIS, LWE, decLWE
- Security proofs

Hardness Reductions

- search to decision
- WC to AC reductions

Algebraic Lattices

- Ideal and module lattices
- NTRU, RLWE, mod-LWE

Part I
Lattice theory
Lattices
Hard problems
Cryptography
Trapdoor bases
Cryptanalysis
Lattice Sieving
Basis Reduction

Part II

Lattices used in cryptography

- SIS, LWE, decLWE
- Security proofs

Hardness Reductions

- search to decision
- WC to AC reductions

Algebraic Lattices

- Ideal and module lattices
- NTRU, RLWE, mod-LWE
acknowledgements: many slides adapted from Alice Pellet-Mary!

Lattice theory

Similarities:

From codes to lattices

Similarities:

- Both are discrete additive groups

From codes to lattices

Similarities:

- Both are discrete additive groups
- Same problems: finding short or close lattice/code points

From codes to lattices

Similarities:

- Both are discrete additive groups
- Same problems: finding short or close lattice/code points

Differences:

From codes to lattices

Similarities:

- Both are discrete additive groups
- Same problems: finding short or close lattice/code points

Differences:

- Hamming distance in $\mathbb{F}_{\boldsymbol{q}}^{\boldsymbol{n}} \rightarrow$ Euclidean distance in $\mathbb{R}^{\boldsymbol{n}}$

From codes to lattices

Similarities:

- Both are discrete additive groups
- Same problems: finding short or close lattice/code points

Differences:

- Hamming distance in $\mathbb{F}_{\boldsymbol{q}}^{\boldsymbol{n}} \rightarrow$ Euclidean distance in $\mathbb{R}^{\boldsymbol{n}}$ (pictures!)

From codes to lattices

Similarities:

- Both are discrete additive groups
- Same problems: finding short or close lattice/code points

Differences:

- Hamming distance in $\mathbb{F}_{\boldsymbol{q}}^{\boldsymbol{n}} \rightarrow$ Euclidean distance in $\mathbb{R}^{\boldsymbol{n}}$ (pictures!)
- Code with decoding algorithm \rightarrow Any lattice and a short basis (decoding for free!)

From codes to lattices

Similarities:

- Both are discrete additive groups
- Same problems: finding short or close lattice/code points

Differences:

- Hamming distance in $\mathbb{F}_{\boldsymbol{q}}^{\boldsymbol{n}} \rightarrow$ Euclidean distance in $\mathbb{R}^{\boldsymbol{n}}$ (pictures!)
- Code with decoding algorithm \rightarrow Any lattice and a short basis (decoding for free!)

```
    most important:
row vectors (xG) }->\mathrm{ column vectors (Gx)
```


Lattice

A lattice $\mathcal{L} \subset \mathbb{R}^{\boldsymbol{n}}$ is a discrete subgroup of $\mathbb{R}^{\boldsymbol{n}}$.

Discrete

For every $\boldsymbol{v} \in \mathcal{L}$ there exists an open ball around \boldsymbol{v} that contains no other elements from \mathcal{L}.

Example $\mathbb{Z} \subset \mathbb{R}$:

Additive

Additive

Additive

$$
\begin{aligned}
& \text { - • • • • • • • • • }
\end{aligned}
$$

First minimum of a lattice

First minimum of a lattice

By the additivity the neighborhood of every lattice point looks the same.

First minimum of a lattice

> By the additivity the neighborhood of every lattice point looks the same.

First minimum of a lattice

The first minimum $\boldsymbol{\lambda}_{\mathbf{1}}(\mathcal{L})$ of a lattice \mathcal{L} is
the length of the shortest nonzero lattice vector:

$$
\lambda_{1}(\mathcal{L})=\min _{x \in \mathcal{L} \backslash\{0\}}\{\|x\|\}>0
$$

Volume of a lattice

The volume $\operatorname{vol}(\mathcal{L})$ of a lattice \mathcal{L} is the (co-)volume of any fundamental area w.r.t. translation of the lattice:

$$
\operatorname{vol}(\mathcal{L})=\operatorname{vol}\left(\mathbb{R}^{n} / \mathcal{L}\right) \quad(\operatorname{density}(\mathcal{L})=1 / \operatorname{vol}(\mathcal{L}))
$$

Volume of a lattice

The volume $\operatorname{vol}(\mathcal{L})$ of a lattice \mathcal{L} is the (co-)volume of any fundamental area w.r.t. translation of the lattice:

$$
\operatorname{vol}(\mathcal{L})=\operatorname{vol}\left(\mathbb{R}^{n} / \mathcal{L}\right) \quad(\operatorname{density}(\mathcal{L})=1 / \operatorname{vol}(\mathcal{L}))
$$

Volume of a lattice

The volume $\operatorname{vol}(\mathcal{L})$ of a lattice \mathcal{L} is the (co-)volume of any fundamental area w.r.t. translation of the lattice:

$$
\operatorname{vol}(\mathcal{L})=\operatorname{vol}\left(\mathbb{R}^{n} / \mathcal{L}\right) \quad(\operatorname{density}(\mathcal{L})=1 / \operatorname{vol}(\mathcal{L}))
$$

Volume of a lattice

The volume $\operatorname{vol}(\mathcal{L})$ of a lattice \mathcal{L} is the (co-)volume of any fundamental area w.r.t. translation of the lattice:

$$
\operatorname{vol}(\mathcal{L})=\operatorname{vol}\left(\operatorname{Span}_{\mathbb{R}}(\mathcal{L}) / \mathcal{L}\right), \quad(\operatorname{density}(\mathcal{L})=1 / \operatorname{vol}(\mathcal{L}))
$$

Minkowski's Theorem

Minkowski's Theorem
For a full-rank lattice $\mathcal{L} \subset \mathbb{R}^{n}$ we have

$$
\operatorname{vol}\left(\frac{1}{2} \lambda_{1}(\mathcal{L}) \cdot \mathcal{B}^{n}\right) \leq \operatorname{vol}(\mathcal{L})
$$

Minkowski's Theorem

Minkowski's Theorem
For a full-rank lattice $\mathcal{L} \subset \mathbb{R}^{n}$ we have

$$
\lambda_{1}(\mathcal{L}) \leq \underbrace{2 \frac{\operatorname{vol}(\mathcal{L})^{1 / n}}{\operatorname{vol}\left(\mathcal{B}^{n}\right)^{1 / n}}}_{\operatorname{Mk}(\mathcal{L})} \approx 2 \cdot \sqrt{n / 2 \pi e} \cdot \operatorname{vol}(\mathcal{L})^{1 / n}
$$

Lattice basis
\mathbb{R}-linearly independent $\mathbf{b}_{1}, \ldots, \mathbf{b}_{\boldsymbol{n}}$

$$
\mathcal{L}(B):=\left\{\sum_{i} x_{i} b_{i}: x \in \mathbb{Z}^{n}\right\} \subset \mathbb{R}^{n}
$$

$$
\begin{aligned}
& \frac{\text { Fundamental Parallelepiped }}{\mathcal{P}(B)=B \cdot[0,1)^{n}} \\
& \operatorname{vol}(\mathcal{L})=\operatorname{vol}(\mathcal{P}(B))=|\operatorname{det}(B)|
\end{aligned}
$$

Lattice basis

$$
\begin{gathered}
\mathbb{R} \text {-linearly independent } \mathbf{b}_{1}, \ldots, \mathbf{b}_{n} \\
\mathcal{L}(\boldsymbol{B}):=\left\{\sum_{i} \boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{b}_{\boldsymbol{i}}: \boldsymbol{x} \in \mathbb{Z}^{\boldsymbol{n}}\right\} \subset \mathbb{R}^{\boldsymbol{n}}
\end{gathered}
$$

Fundamental Parallelepiped

$$
\mathcal{P}(B)=B \cdot[0,1)^{n}
$$

$$
\operatorname{vol}(\mathcal{L})=\operatorname{vol}(\mathcal{P}(B))=|\operatorname{det}(B)|
$$

Infinitely many distinct bases

$$
B^{\prime}=B \cdot \boldsymbol{U} \text { for } \boldsymbol{U} \in \mathcal{G} \mathcal{L}_{n}(\mathbb{Z})
$$

Hard Problems

Hard Problems

Hard Problems

How hard is SVP/CVP?

In theory: best algorithm has asymptotic complexity $2^{\text {c.n+o(n) }}$ classical: $c \approx 0.292$, or quantum: $c \approx 0.265$)
\Rightarrow not polynomial

How hard is SVP/CVP?

In theory: best algorithm has asymptotic complexity $2^{\text {c.n+o(n) }}$ classical: $c \approx 0.292$, or quantum: $c \approx 0.265$)
\Rightarrow not polynomial

In practice:

- $\boldsymbol{n}=2 \rightsquigarrow$ easy, very efficient in practice

How hard is SVP/CVP?

In theory: best algorithm has asymptotic complexity $2^{\text {c.n+o(n) }}$ classical: $c \approx 0.292$, or quantum: $c \approx 0.265$)
\Rightarrow not polynomial

In practice:

- $\boldsymbol{n}=2 \rightsquigarrow$ easy, very efficient in practice
- up to $\boldsymbol{n}=\mathbf{6 0}$ or $\boldsymbol{n}=\mathbf{8 0} \rightsquigarrow$ a few minutes on a personal laptop

How hard is SVP/CVP?

In theory: best algorithm has asymptotic complexity $2^{\text {c.n+o(n) }}$ classical: $c \approx 0.292$, or quantum: $c \approx 0.265$)

$$
\Rightarrow \text { not polynomial }
$$

In practice:

- $\boldsymbol{n}=2 \rightsquigarrow$ easy, very efficient in practice
- up to $\boldsymbol{n}=\mathbf{6 0}$ or $\boldsymbol{n}=\mathbf{8 0} \rightsquigarrow$ a few minutes on a personal laptop
- up to $\boldsymbol{n}=180 \rightsquigarrow$ few weeks on a big computer with good code

How hard is SVP/CVP?

In theory: best algorithm has asymptotic complexity $2^{\text {c.n+o(n) }}$ classical: $c \approx 0.292$, or quantum: $c \approx 0.265$)

$$
\Rightarrow \text { not polynomial }
$$

In practice:

- $\boldsymbol{n}=2 \rightsquigarrow$ easy, very efficient in practice
- up to $\boldsymbol{n}=\mathbf{6 0}$ or $\boldsymbol{n}=\mathbf{8 0} \rightsquigarrow$ a few minutes on a personal laptop
- up to $\boldsymbol{n}=180 \rightsquigarrow$ few weeks on a big computer with good code
- from $n=400$ to $n=1000 \rightsquigarrow$ cryptography

Approximate versions

$$
\begin{aligned}
& \text { Find a } \frac{\alpha \text {-approx-SVP }}{\text { short nonzero }} \text { vector } \\
& v \in \mathcal{L} \text { of length } \leq \alpha \cdot \lambda_{1}(\mathcal{L}) .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Given a } \frac{\alpha \text {-approx-CVP }}{\text { target } t \in \mathbb{R}^{n}} \text {, find } \\
& \text { a close vector } \boldsymbol{v} \in \mathcal{L} \text { to } t .
\end{aligned}
$$

Approximate versions

$$
\begin{aligned}
& \text { Find a } \frac{\alpha \text {-approx-SVP }}{\text { short nonzero }} \text { vector } \\
& v \in \mathcal{L} \text { of length } \leq \alpha \cdot \lambda_{\mathbf{1}}(\mathcal{L})
\end{aligned}
$$

Given a $\frac{\boldsymbol{\alpha} \text {-approx-CVP }}{\text { target } t \in \mathbb{R}^{n}}$, find
a close vector $\boldsymbol{v} \in \mathcal{L}$ to t.

Supposedly hard to solve when n is large and the approximation factor $\boldsymbol{\alpha}$ is small (pol y(n))

Promise versions

Promise versions

Supposedly hard to solve when n is large and the promise gap $\mathbf{1} \boldsymbol{\delta}$ is small (poly(n))

Asymptotic hardness of approx-SVP/CVP

Best Time/Approximation trade-off for SVP, CVP (even quantumly): BKZ algorithm

Asymptotic hardness of approx-SVP/CVP

Best Time/Approximation trade-off for SVP, CVP (even quantumly): BKZ algorithm

Asymptotic hardness of approx-SVP/CVP

Best Time/Approximation trade-off for SVP, CVP (even quantumly): BKZ algorithm

Recap

We have seen:

- Lattices are discrete subgroups of \mathbb{R}^{n}

Recap

We have seen:

- Lattices are discrete subgroups of \mathbb{R}^{n}
- Lattices can be efficiently represented by a basis

Recap

We have seen:

- Lattices are discrete subgroups of \mathbb{R}^{n}
- Lattices can be efficiently represented by a basis

For large dimension \boldsymbol{n} and small approximation factors the following problems are supposedly hard:

- SVP, approxSVP, uSVP

Recap

We have seen:

- Lattices are discrete subgroups of \mathbb{R}^{n}
- Lattices can be efficiently represented by a basis

For large dimension \boldsymbol{n} and small approximation factors the following problems are supposedly hard:

- SVP, approxSVP, uSVP
- CVP, approxCVP, BDD

Recap

We have seen:

- Lattices are discrete subgroups of \mathbb{R}^{n}
- Lattices can be efficiently represented by a basis

For large dimension \boldsymbol{n} and small approximation factors the following problems are supposedly hard:

- SVP, approxSVP, uSVP
- CVP, approxCVP, BDD

Many more variants possible: search vs decisional, one vs more solutions, ...)

Recap

We have seen:

- Lattices are discrete subgroups of \mathbb{R}^{n}
- Lattices can be efficiently represented by a basis

For large dimension \boldsymbol{n} and small approximation factors the following problems are supposedly hard:

- SVP, approxSVP, uSVP
- CVP, approxCVP, BDD

Many more variants possible: search vs decisional, one vs more solutions, ...)

How to build cryptography from this?

Lattice-based cryptography

Good vs bad basis
Good basis (Secret key)
Bad basis (Public key)

Good vs bad basis

Good basis (Secret key)
Bad basis (Public key)

Good vs bad basis

Good basis (Secret key)

Keygen: Generate a random lattice along with a good basis (NTRU, LWE, SIS, ...)

$$
\bullet \bullet \quad \text { Input: } \quad \begin{aligned}
& \bullet \\
& \bullet
\end{aligned}
$$

Solving CVP with a short basis

$$
\begin{aligned}
& \text { Input: } \quad t=-1.4 \cdot b_{1}+2.2 \cdot b_{2} \\
& \\
& \quad \begin{array}{l}
\text { round coordinates }
\end{array} \\
& \text { Output: } v=-1 \cdot b_{1}+2 \cdot b_{2} \\
& e=t-v=-.4 \cdot b_{1}+0.2 \cdot b_{2} \\
& e \in B \cdot\left[-\frac{1}{2}, \frac{1}{2}\right)^{n}
\end{aligned}
$$

Solving CVP with a short basis

Input: $\quad t=-1.4 \cdot b_{1}+2.2 \cdot b_{2}$
\downarrow round coordinates
Output: $v=-\mathbf{1} \cdot \boldsymbol{b}_{\mathbf{1}}+\mathbf{2} \cdot \boldsymbol{b}_{\mathbf{2}}$
$e=t-v=-.4 \cdot b_{1}+0.2 \cdot b_{2}$
$e \in B \cdot\left[-\frac{1}{2}, \frac{1}{2}\right)^{n}$

BDD: inner-radius approxCVP: outer-radius

$$
\begin{aligned}
\text { Input: } \quad t=- & 1.4 \cdot b_{1}+2.2 \cdot b_{2} \\
& \downarrow \text { round coordinates }
\end{aligned}
$$

$$
\text { Output: } v=-\mathbf{1} \cdot \boldsymbol{b}_{1}+2 \cdot \boldsymbol{b}_{2}
$$

$$
e=t-v=-.4 \cdot b_{1}+0.2 \cdot b_{2}
$$

$$
e \in B \cdot\left[-\frac{1}{2}, \frac{1}{2}\right)^{n}
$$

The better the basis, the closer the solution

BDD: inner-radius
approxCVP: outer-radius

Encryption via BDD

KeyGen:
sk $=$ good basis of \mathcal{L}.
pk $=$ bad basis of \mathcal{L}.

Encryption via BDD

KeyGen:
sk $=$ good basis of \mathcal{L}.
pk $=$ bad basis of \mathcal{L}.
Encrypt($\boldsymbol{m}, \boldsymbol{p k}$) :
Input: encode message $\boldsymbol{m} \in \mathcal{L}$ using pk.
Output: noisy message $\boldsymbol{c}=\boldsymbol{m}+\boldsymbol{e}$.

Encryption via BDD

KeyGen:

sk $=$ good basis of \mathcal{L}.
pk $=$ bad basis of \mathcal{L}.

Encrypt (m, pk) :

Input: encode message $\boldsymbol{m} \in \mathcal{L}$ using pk .
Output: noisy message $\boldsymbol{c}=\boldsymbol{m}+\boldsymbol{e}$.
Decrypt ($c, s k$):
Input: $\boldsymbol{c}=\boldsymbol{m}+\boldsymbol{e}$.
Output: recover \boldsymbol{m} using sk.

Encryption via BDD

KeyGen:
sk $=$ good basis of \mathcal{L}.
$\mathrm{pk}=$ bad basis of \mathcal{L}.

Encrypt ($m, p k$) :

Input: encode message $\boldsymbol{m} \in \mathcal{L}$ using pk .
Output: noisy message $\boldsymbol{c}=\boldsymbol{m}+\boldsymbol{e}$.
Decrypt(c, sk):
Input: $\boldsymbol{c}=\boldsymbol{m}+\boldsymbol{e}$.
Output: recover \boldsymbol{m} using sk.

Assumption: Hard to solve BDD in \mathcal{L} with bad basis.

Hash-and-sign signature scheme via approxCVP

Hash-and-sign signature scheme via approxCVP

Hash-and-sign signature scheme via approxCVP

KeyGen:
sk $=$ good basis of \mathcal{L}.
pk $=$ bad basis of \mathcal{L}.

Sign($m, s k):$
Hash \boldsymbol{m} to a target $\boldsymbol{t}=\boldsymbol{H}(\boldsymbol{m}) \in \mathbb{R}^{\boldsymbol{n}}$.
Output: $\boldsymbol{s} \in \mathcal{L}$ close to \boldsymbol{t} using sk.

Hash-and-sign signature scheme via approxCVP

KeyGen:
sk $=$ good basis of \mathcal{L}.
pk $=$ bad basis of \mathcal{L}.

Sign(m, sk):
Hash \boldsymbol{m} to a target $\boldsymbol{t}=\boldsymbol{H}(\boldsymbol{m}) \in \mathbb{R}^{\boldsymbol{n}}$.
Output: $\boldsymbol{s} \in \mathcal{L}$ close to \boldsymbol{t} using sk.
$\operatorname{Verify}(s, p k):$
Check that $s \in \mathcal{L}$ using pk.
Check that \boldsymbol{s} is close to $\boldsymbol{H}(\boldsymbol{m})$.

Hash-and-sign signature scheme via approxCVP

KeyGen:
sk $=$ good basis of \mathcal{L}.
pk $=$ bad basis of \mathcal{L}.
Sign(m,sk):
Hash \boldsymbol{m} to a target $\boldsymbol{t}=\boldsymbol{H}(\boldsymbol{m}) \in \mathbb{R}^{\boldsymbol{n}}$.
Output: $\boldsymbol{s} \in \mathcal{L}$ close to \boldsymbol{t} using sk.
Verify $(s, p k)$:
Check that $s \in \mathcal{L}$ using pk.
Check that \boldsymbol{s} is close to $\boldsymbol{H}(\boldsymbol{m})$.

Assumption: Hard to solve approxCVP in \mathcal{L} with bad basis.

Learning attack on the signature scheme

Parallelepiped attack:

- ask for a signature \boldsymbol{s} on \boldsymbol{m}
- plot $\boldsymbol{H}(\boldsymbol{m})-s$

Learning attack on the signature scheme

Parallelepiped attack:

- ask for a signature \boldsymbol{s} on \boldsymbol{m}
- plot $\boldsymbol{H}(\boldsymbol{m})-\boldsymbol{s}$
- repeat

Learning attack on the signature scheme

Parallelepiped attack:

- ask for a signature \boldsymbol{s} on \boldsymbol{m}
- plot $\boldsymbol{H}(\boldsymbol{m})-\boldsymbol{s}$
- repeat

From the shape of the parallelepiped, one can recover the short basis

Idea: solve approxCVP randomly

Sign($m, s k):$

Hash \boldsymbol{m} to a target $\boldsymbol{t}=\boldsymbol{H}(\boldsymbol{m}) \in \mathbb{R}^{\boldsymbol{n}}$.
Output: (discrete Gaussian) sample
$\boldsymbol{s} \in \mathcal{L}$ close to \boldsymbol{t} using sk.

> Idea: solve approxCVP randomly
Sign (m, sk) :
Hash \boldsymbol{m} to a target $\boldsymbol{t}=\boldsymbol{H}(\boldsymbol{m}) \in \mathbb{R}^{\boldsymbol{n}}$.
Output: (discrete Gaussian) sample
$\boldsymbol{s} \in \mathcal{L}$ close to \boldsymbol{t} using sk.
Signature does not depend on secret basis \Rightarrow no leakage!

> Idea: solve approxCVP randomly

Sign($m, s k):$

Hash \boldsymbol{m} to a target $\boldsymbol{t} \boldsymbol{=} \boldsymbol{H}(\boldsymbol{m}) \in \mathbb{R}^{\boldsymbol{n}}$.
Output: (discrete Gaussian) sample
$\boldsymbol{s} \in \mathcal{L}$ close to \boldsymbol{t} using sk.
Signature does not depend
on secret basis \Rightarrow no leakage!

> FALCON = the above + NTRU lattices.

We have seen:

- BDD is hard (in a family of random lattices) \Rightarrow encryption scheme.

We have seen:

- BDD is hard (in a family of random lattices) \Rightarrow encryption scheme.
- approxCVP is hard (...) \Rightarrow signature scheme.

We have seen:

- BDD is hard (in a family of random lattices) \Rightarrow encryption scheme.
- approxCVP is hard (...) \Rightarrow signature scheme.

More on these families of lattices in part II!

We have seen:

- BDD is hard (in a family of random lattices) \Rightarrow encryption scheme.
- approxCVP is hard (...) \Rightarrow signature scheme.

More on these families of lattices in part II!

One can construct many advanced primitives from lattices:

- (fully) homomorphic encryption
- identity based encryption
- functional encryption for linear functions

Recap and advanced constructions

We have seen:

- BDD is hard (in a family of random lattices) \Rightarrow encryption scheme.
- approxCVP is hard (...) \Rightarrow signature scheme.

More on these families of lattices in part II!

One can construct many advanced primitives from lattices:

- (fully) homomorphic encryption
- identity based encryption
- functional encryption for linear functions

Cryptanalysis - Algorithms to solve (approx) SVP

Algorithms to solve (approx)SVP

Best Time/Approximation trade-off for SVP, CVP (even quantumly):

Algorithms to solve (approx)SVP

Best Time/Approximation trade-off for SVP, CVP (even quantumly):

Algorithms to solve (approx)SVP

Best Time/Approximation trade-off for SVP, CVP (even quantumly):

Algorithms to solve (approx)SVP

Best Time/Approximation trade-off for SVP, CVP (even quantumly):

Heuristically solving SVP with lattice sieving

Heuristic assumptions allow to..

Heuristic assumptions allow to..

- bridge the gap between provable and practical algorithms

Heuristic assumptions allow to..

- bridge the gap between provable and practical algorithms - reason about the practical behavior of algorithms

Heuristic assumptions allow to..

- bridge the gap between provable and practical algorithms
- reason about the practical behavior of algorithms
- derive asymptotic and concrete hardness estimates

Heuristic assumptions allow to..

- bridge the gap between provable and practical algorithms
- reason about the practical behavior of algorithms
- derive asymptotic and concrete hardness estimates

Provable: worst-case analysis
Heuristic: simplified average-case analysis

Heuristic assumptions allow to..

- bridge the gap between provable and practical algorithms
- reason about the practical behavior of algorithms
- derive asymptotic and concrete hardness estimates

Provable: worst-case analysis
Heuristic: simplified average-case analysis

Why is this ok for lattice problems?

Heuristic assumptions allow to..

- bridge the gap between provable and practical algorithms
- reason about the practical behavior of algorithms
- derive asymptotic and concrete hardness estimates

Provable: worst-case analysis
Heuristic: simplified average-case analysis

Why is this ok for lattice problems?

- average-case is often the worst case (see part II!)

Heuristic assumptions allow to..

- bridge the gap between provable and practical algorithms
- reason about the practical behavior of algorithms
- derive asymptotic and concrete hardness estimates

Provable: worst-case analysis
Heuristic: simplified average-case analysis

Why is this ok for lattice problems?

- average-case is often the worst case (see part II!)
- matches with practical experiments

Gaussian Heuristic

For a 'nice' volume $S \subset \mathbb{R}^{n}$: $|S \cap \mathcal{L}| \approx \frac{\operatorname{vol}(S)}{\operatorname{vol}(\mathcal{L})}=\operatorname{vol}(S) \cdot \operatorname{density}(\mathcal{L})$

Gaussian Heuristic

For a 'nice' volume $S \subset \mathbb{R}^{n}$: $|S \cap \mathcal{L}| \approx \frac{\operatorname{vol}(S)}{\operatorname{vol}(\mathcal{L})}=\operatorname{vol}(S) \cdot \operatorname{density}(\mathcal{L})$
lattice points are uniformly distributed with a certain density.

Gaussian Heuristic

For a 'nice' volume $S \subset \mathbb{R}^{n}$: $|S \cap \mathcal{L}| \approx \frac{\operatorname{vol}(S)}{\operatorname{vol}(\mathcal{L})}=\operatorname{vol}(S) \cdot \operatorname{density}(\mathcal{L})$
lattice points are uniformly distributed with a certain density.

In theory: true in expectation over all translations of S or for a random lattice \mathcal{L}.

For a 'nice' volume $S \subset \mathbb{R}^{n}$:

$$
|S \cap \mathcal{L}| \approx \frac{\operatorname{vol}(S)}{\operatorname{vol}(\mathcal{L})}=\operatorname{vol}(S) \cdot \operatorname{density}(\mathcal{L})
$$

lattice points are uniformly distributed with a certain density.

In theory: true in expectation over all translations of S or for a random lattice \mathcal{L}.

In practice: true for random lattices.
(for a very weak heuristic notion of randomness)

Intermezzo on high dimensional geometry (1)

High dimensional volumes can behave unintuitively

Intermezzo on high dimensional geometry (1)

High dimensional volumes can behave unintuitively

$$
\operatorname{vol}\left([-1,1]^{n}\right)=2^{n}, \quad \operatorname{vol}\left(\mathcal{B}^{n}\right)=\frac{\pi^{n / 2}}{\Gamma\left(\frac{n}{2}+1\right)}=\left(\frac{2 \pi e}{n}\right)^{n / 2+o(n)} \rightarrow 0
$$

Intermezzo on high dimensional geometry (1)

High dimensional volumes can behave unintuitively

$$
\begin{array}{ccc}
\operatorname{vol}\left([-1,1]^{n}\right)=2^{n}, & \operatorname{vol}\left(\mathcal{B}^{n}\right)=\frac{\pi^{n / 2}}{\Gamma\left(\frac{n}{2}+1\right)}=\left(\frac{2 \pi e}{n}\right)^{n / 2+o(n)} \rightarrow 0 \\
n=2 & n=4 & n=10 \\
78.5 \% & 31 \% & 0.25 \% \\
& &
\end{array}
$$

Intermezzo on high dimensional geometry (1)

High dimensional volumes can behave unintuitively

$$
\operatorname{vol}\left([-1,1]^{n}\right)=2^{n}, \quad \operatorname{vol}\left(\mathcal{B}^{n}\right)=\frac{\pi^{n / 2}}{\Gamma\left(\frac{n}{2}+1\right)}=\left(\frac{2 \pi e}{n}\right)^{n / 2+o(n)} \rightarrow 0
$$

$n=10$
0.25\%

\boldsymbol{n}-dimensional balls with a fixed radius 'disappear' for large \boldsymbol{n}.

Intermezzo on high dimensional geometry (2)

Scaling by \boldsymbol{R} changes volume by factor $\boldsymbol{R}^{\boldsymbol{n}}$.

Intermezzo on high dimensional geometry (2)

Scaling by \boldsymbol{R} changes volume by factor $\boldsymbol{R}^{\boldsymbol{n}}$.
Example: suppose we have a ball $\gamma \cdot \mathcal{B}^{500}$ with the same volume as a 500-dimensional lattice $\mathcal{L} \subset \mathbb{R}^{500}$.

Intermezzo on high dimensional geometry (2)

Scaling by \boldsymbol{R} changes volume by factor $\boldsymbol{R}^{\boldsymbol{n}}$.
Example: suppose we have a ball $\gamma \cdot \mathcal{B}^{500}$ with the same volume as a 500-dimensional lattice $\mathcal{L} \subset \mathbb{R}^{500}$.

Gaussian Heuristic \Rightarrow

$$
\begin{aligned}
& \left|\left(\gamma \cdot \mathcal{B}^{500} \backslash\{0\}\right) \cap \mathcal{L}\right| \approx 1 \\
& \left|\left(1.05 \cdot \gamma \cdot \mathcal{B}^{500} \backslash\{0\}\right) \cap \mathcal{L}\right| \approx 1.05^{500}=3.9 \cdot 10^{10} \\
& \left|\left(0.95 \cdot \gamma \cdot \mathcal{B}^{500} \backslash\{0\}\right) \cap \mathcal{L}\right|=7.3 \cdot 10^{-12} \approx 0
\end{aligned}
$$

Intermezzo on high dimensional geometry (2)

Scaling by \boldsymbol{R} changes volume by factor $\boldsymbol{R}^{\boldsymbol{n}}$.
Example: suppose we have a ball $\gamma \cdot \mathcal{B}^{500}$ with the same volume as a 500-dimensional lattice $\mathcal{L} \subset \mathbb{R}^{500}$.

Gaussian Heuristic \Rightarrow

$$
\begin{aligned}
& \left|\left(\gamma \cdot \mathcal{B}^{500} \backslash\{0\}\right) \cap \mathcal{L}\right| \approx 1 \\
& \left|\left(1.05 \cdot \gamma \cdot \mathcal{B}^{500} \backslash\{0\}\right) \cap \mathcal{L}\right| \approx 1.05^{500}=3.9 \cdot 10^{10} \\
& \left|\left(0.95 \cdot \gamma \cdot \mathcal{B}^{500} \backslash\{0\}\right) \cap \mathcal{L}\right|=7.3 \cdot 10^{-12} \approx 0
\end{aligned}
$$

Intermezzo on high dimensional geometry (2)

Scaling by \boldsymbol{R} changes volume by factor $\boldsymbol{R}^{\boldsymbol{n}}$.
Example: suppose we have a ball $\gamma \cdot \mathcal{B}^{500}$ with the same volume as a 500 -dimensional lattice $\mathcal{L} \subset \mathbb{R}^{500}$.

Gaussian Heuristic \Rightarrow

$$
\begin{aligned}
& \left|\left(\gamma \cdot \mathcal{B}^{500} \backslash\{0\}\right) \cap \mathcal{L}\right| \approx 1 \\
& \left|\left(1.05 \cdot \gamma \cdot \mathcal{B}^{500} \backslash\{0\}\right) \cap \mathcal{L}\right| \approx 1.05^{500}=3.9 \cdot 10^{10} \\
& \left|\left(0.95 \cdot \gamma \cdot \mathcal{B}^{500} \backslash\{0\}\right) \cap \mathcal{L}\right|=7.3 \cdot 10^{-12} \approx 0
\end{aligned}
$$

$\lambda_{1}(\mathcal{L}) \approx \gamma$.

$$
\lambda_{1} \approx \operatorname{gh}(\mathcal{L}):=\frac{\operatorname{vol}(\mathcal{L})^{1 / n}}{\operatorname{vol}\left(\mathcal{B}^{n}\right)^{1 / n}} \sim \sqrt{n / 2 \pi e} \cdot \operatorname{vol}(\mathcal{L})^{1 / n} .
$$

Intermezzo on high dimensional geometry (2)

Scaling by \boldsymbol{R} changes volume by factor $\boldsymbol{R}^{\boldsymbol{n}}$.
Example: suppose we have a ball $\gamma \cdot \mathcal{B}^{500}$ with the same volume as a 500 -dimensional lattice $\mathcal{L} \subset \mathbb{R}^{500}$.

Gaussian Heuristic \Rightarrow

$$
\begin{aligned}
& \left|\left(\gamma \cdot \mathcal{B}^{500} \backslash\{0\}\right) \cap \mathcal{L}\right| \approx 1 \\
& \left|\left(1.05 \cdot \gamma \cdot \mathcal{B}^{500} \backslash\{0\}\right) \cap \mathcal{L}\right| \approx 1.05^{500}=3.9 \cdot 10^{10} \\
& \left|\left(0.95 \cdot \gamma \cdot \mathcal{B}^{500} \backslash\{0\}\right) \cap \mathcal{L}\right|=7.3 \cdot 10^{-12} \approx 0
\end{aligned}
$$

$\lambda_{1}(\mathcal{L}) \approx \gamma$.

$$
\lambda_{1} \approx \operatorname{gh}(\mathcal{L}):=\frac{\operatorname{vol}(\mathcal{L})^{1 / n}}{\operatorname{vol}\left(\mathcal{B}^{n}\right)^{1 / n}} \sim \sqrt{n / 2 \pi e} \cdot \operatorname{vol}(\mathcal{L})^{1 / n}
$$

1. Sample a list $L \subset \mathcal{L}$ of (long) lattice vectors.
2. Sample a list $L \subset \mathcal{L}$ of (long) lattice vectors.
3. Repeat:

Find close vectors $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}} \in \boldsymbol{L}$.

Replace $\mathbf{v}_{\mathbf{2}} \leftarrow \mathbf{v}_{\mathbf{1}}-\mathbf{v}_{\mathbf{2}}$.

Heuristic complexity analysis

$$
\begin{aligned}
& \text { Start with a list } L \text { of } \\
& \boldsymbol{N} \text { vectors of length } \leq \gamma .
\end{aligned}
$$

Heuristic complexity analysis

> Start with a list L of
> \boldsymbol{N} vectors of length $\leq \gamma$.

Heuristic assumption
vectors in list L have uniform directions.

Heuristic complexity analysis

> Start with a list L of \boldsymbol{N} vectors of length $\leq \gamma$.

Heuristic assumption
vectors in list L have uniform directions.

$$
\text { Probability }\left\|\boldsymbol{v}_{\mathbf{1}}-\boldsymbol{v}_{\mathbf{2}}\right\| \leq \mathbf{0 . 9 9 9 \cdot \gamma \text { equals } .}
$$

relative volume spherical cap $\approx(3 / 4+\epsilon)^{n / 2+o(n)}$

Heuristic complexity analysis

> Start with a list L of \boldsymbol{N} vectors of length $\leq \gamma$.

Heuristic assumption
vectors in list L have uniform directions.

Probability $\left\|\boldsymbol{v}_{\mathbf{1}}-\boldsymbol{v}_{\mathbf{2}}\right\| \leq \mathbf{0 . 9 9 9} \cdot \boldsymbol{\gamma}$ equals relative volume spherical cap $\approx(3 / 4+\epsilon)^{n / 2+o(n)}$
N^{2} pairs, new list size N, so need $N^{2} \cdot(3 / 4)^{n / 2} \geq N$.

Heuristic complexity analysis

> Start with a list L of \boldsymbol{N} vectors of length $\leq \gamma$.

Heuristic assumption
vectors in list L have uniform directions.

$$
\text { Probability }\left\|\boldsymbol{v}_{\mathbf{1}}-\mathbf{v}_{\mathbf{2}}\right\| \leq \mathbf{0 . 9 9 9 \cdot \gamma \text { equals }}
$$ relative volume spherical cap $\approx(3 / 4+\epsilon)^{n / 2+o(n)}$

N^{2} pairs, new list size N, so need $N^{2} \cdot(3 / 4)^{n / 2} \geq N$.

Space: $\quad N \cdot \operatorname{poly}(n)=(4 / 3)^{n / 2+o(n)}=2^{0.2075+o(n)}$
Time: $\quad N^{2} \cdot \operatorname{poly}(n)=(4 / 3)^{n+o(n)}=2^{0.415 n+o(n)}$.

Heuristic complexity analysis

> Start with a list L of \boldsymbol{N} vectors of length $\leq \gamma$.

Heuristic assumption
vectors in list L have uniform directions.

$$
\text { Probability }\left\|\boldsymbol{v}_{\mathbf{1}}-\boldsymbol{v}_{\mathbf{2}}\right\| \leq \mathbf{0 . 9 9 9 \cdot \gamma} \text { equals }
$$ relative volume spherical cap $\approx(3 / 4+\epsilon)^{n / 2+o(n)}$

$$
N^{2} \text { pairs, new list size } N \text {, so need } N^{2} \cdot(3 / 4)^{n / 2} \geq N
$$

Space: $\quad N \cdot \operatorname{poly}(n)=(4 / 3)^{n / 2+o(n)}=2^{0.2075+o(n)}$
Time: $\quad N^{2} \cdot \operatorname{poly}(n)=(4 / 3)^{n+o(n)}=2^{0.415 n+o(n)}$.

$$
\begin{aligned}
& \text { Can be improved to } \\
& 2^{0.292 n+o(n)!}
\end{aligned}
$$

Solving approxSVP/CVP via basis reduction

$$
\mathrm{GSO}: b_{i}^{*}:=\underbrace{\pi\left(b_{1}, \ldots, b_{i-1}\right) \perp}_{\pi_{i}}\left(b_{i}\right)
$$

Gram-Schmidt Orthogonalisation

$$
\text { GSO: } b_{i}^{*}:=\underbrace{\pi_{\left(b_{1}, \ldots, b_{i-1}\right)^{\perp}}}_{\pi_{i}}\left(b_{i}\right)
$$

Fundamental Area: $\quad \mathcal{F}_{B^{*}}:=\prod_{i=1}^{k}\left[-\frac{1}{2} b_{i}^{*}, \frac{1}{2} b_{i}^{*}\right)$

Gram-Schmidt Orthogonalisation

$$
\mathrm{GSO}: b_{i}^{*}:=\underbrace{\pi_{\left(b_{1}, \ldots, b_{i-1}\right)^{\perp}}}_{\pi_{i}}\left(b_{i}\right)
$$

Fundamental Area: $\quad \mathcal{F}_{B^{*}}:=\prod_{i=1}^{k}\left[-\frac{1}{2} b_{i}^{*}, \frac{1}{2} b_{i}^{*}\right)$

Nearest plane algorithm
Input: target $\boldsymbol{t}=\boldsymbol{e}$
For $\boldsymbol{j}=\boldsymbol{n}, \ldots, 1$:
$\boldsymbol{e} \leftarrow \boldsymbol{e}-\left\lfloor\frac{\left\langle\boldsymbol{e}, \boldsymbol{b}_{i}^{*}\right\rangle}{\left\langle\boldsymbol{b}_{i}^{*}, \boldsymbol{b}_{i}^{*}\right\rangle}\right\rceil \boldsymbol{b}_{i}$.
Output: $\quad \boldsymbol{e} \in \mathcal{F}_{B^{*}}$

Good vs Bad basis

$$
b_{i}^{*}:=\underbrace{\pi_{\left(b_{1}, \ldots, b_{i-1}\right)^{\perp}}}_{\pi_{i}}\left(b_{i}\right)
$$

Good vs Bad basis

$$
b_{i}^{*}:=\underbrace{\pi_{\left(b_{1}, \ldots, b_{i-1}\right)^{\perp}}}_{\pi_{i}}\left(b_{i}\right)
$$

$$
\operatorname{vol}(\mathcal{L})=\operatorname{vol}\left(\mathcal{F}_{B^{*}}\right)=\prod_{i=1}^{k}\left\|\boldsymbol{b}_{i}^{*}\right\|
$$

Good vs Bad basis

$$
\operatorname{vol}(\mathcal{L})=\operatorname{vol}\left(\mathcal{F}_{B^{*}}\right)=\prod_{i=1}^{k}\left\|\boldsymbol{b}_{i}^{*}\right\|
$$

$\mathrm{BDD}:\|\boldsymbol{e}\|<\frac{1}{2} \boldsymbol{\operatorname { m i n }}_{\boldsymbol{i}}\left\|\boldsymbol{b}_{\boldsymbol{i}}^{*}\right\|$,
approxCVP: $\|\boldsymbol{e}\|^{2} \leq \frac{1}{4} \sum_{i}\left\|\boldsymbol{b}_{\boldsymbol{i}}^{*}\right\|^{2}$.

Good vs Bad basis

$$
b_{i}^{*}:=\underbrace{\pi_{\left(b_{1}, \ldots, b_{i-1}\right)^{\perp}}}_{\pi_{i}}\left(b_{i}\right)
$$

$$
\operatorname{vol}(\mathcal{L})=\operatorname{vol}\left(\mathcal{F}_{B^{*}}\right)=\prod_{i=1}^{k}\left\|\boldsymbol{b}_{i}^{*}\right\|
$$

BDD: $\|\boldsymbol{e}\|<\frac{1}{2} \boldsymbol{m i n}_{i}\left\|\boldsymbol{b}_{\boldsymbol{i}}^{*}\right\|$, approxCVP: $\|\boldsymbol{e}\|^{2} \leq \frac{1}{4} \sum_{i}\left\|\boldsymbol{b}_{i}^{*}\right\|^{2}$.

Basis Profile

Basis Profile

Basis Profile

Basis Profile

Basis profile

Measures the length and orthogonality of a basis

Flatten the profile!

Example: NTRU public vs secret basis

public and secret bases generated from the NTRU problem

Wristwatch Lemma

For any lattice \mathcal{L} of rank 2 there exists a basis $\left(\boldsymbol{b}_{1}, \boldsymbol{b}_{2}\right)$ s.t.
$\left\|\boldsymbol{b}_{1}\right\| \leq\left\|\boldsymbol{b}_{2}\right\|$
$\left|\left\langle\boldsymbol{b}_{1}, \boldsymbol{b}_{2}\right\rangle\right| \leq \frac{1}{2}\left\|\boldsymbol{b}_{1}\right\|$
\Downarrow
$\left\|\boldsymbol{b}_{1}^{*}\right\| \leq \sqrt{\frac{4}{3}} \cdot\left\|\boldsymbol{b}_{2}^{*}\right\|$

LLL Reduction

$$
\begin{aligned}
& \text { A befinition } \\
& \text { A basis } \boldsymbol{B} \text { of } \mathcal{L} \text { is LLL-reduced if } \\
& \left(\boldsymbol{\pi}_{\boldsymbol{i}}\left(\boldsymbol{b}_{\boldsymbol{i}}\right), \boldsymbol{\pi}_{\boldsymbol{i}}\left(\boldsymbol{b}_{\boldsymbol{i}+\boldsymbol{1}}\right)\right) \text { is Lagrange Reduced } \\
& \text { for all } \boldsymbol{i}<\boldsymbol{n} .
\end{aligned}
$$

LLL Reduction

$$
\begin{gathered}
\frac{\text { Definition }}{\text { A basis } \boldsymbol{B} \text { of } \mathcal{L} \text { is LLL-reduced if }} \\
\left(\pi_{\boldsymbol{i}}\left(\boldsymbol{b}_{\boldsymbol{i}}\right), \pi_{\boldsymbol{i}}\left(\boldsymbol{b}_{\boldsymbol{i}+\boldsymbol{1}}\right)\right) \text { is Lagrange Reduced } \\
\text { for all } \boldsymbol{i}<\boldsymbol{n} . \\
\Downarrow \\
\forall \boldsymbol{i}<\boldsymbol{n},\left\|\boldsymbol{b}_{i}^{*}\right\| \leq \sqrt{4 / 3} \cdot\left\|\boldsymbol{b}_{\boldsymbol{i}+1}^{*}\right\|
\end{gathered}
$$

LLL Reduction

$$
\begin{aligned}
& \text { A Definition } \\
& \text { A basis } \boldsymbol{B} \text { of } \mathcal{L} \text { is LLL-reduced if } \\
& \left(\boldsymbol{\pi}_{\boldsymbol{i}}\left(\boldsymbol{b}_{\boldsymbol{i}}\right), \boldsymbol{\pi}_{\boldsymbol{i}}\left(\boldsymbol{b}_{\boldsymbol{i}+\boldsymbol{1}}\right)\right) \text { is Lagrange Reduced } \\
& \text { for all } \boldsymbol{i}<\boldsymbol{n} .
\end{aligned}
$$

\Downarrow

$$
\begin{gathered}
\forall i<n,\left\|b_{i}^{*}\right\| \leq \sqrt{4 / 3} \cdot\left\|b_{i+1}^{*}\right\| \\
\Downarrow \\
\left\|b_{1}\right\| \leq \sqrt{4 / 3^{\frac{n-1}{2}}} \cdot \operatorname{vol}(\mathcal{L})^{1 / n}
\end{gathered}
$$

LLL Reduction

$$
\begin{aligned}
& \text { D befinition } \\
& \text { A basis } \boldsymbol{B} \text { of } \mathcal{L} \text { is LLL-reduced if } \\
& \left(\boldsymbol{\pi}_{\boldsymbol{i}}\left(\boldsymbol{b}_{\boldsymbol{i}}\right), \boldsymbol{\pi}_{\boldsymbol{i}}\left(\boldsymbol{b}_{\boldsymbol{i}+\boldsymbol{1}}\right)\right) \text { is Lagrange Reduced } \\
& \text { for all } \boldsymbol{i}<\boldsymbol{n} .
\end{aligned}
$$

$$
\begin{gathered}
\text { While } \exists i \text { s. } \frac{\text { Algorithm }}{\text { t. }\left(\boldsymbol{\pi}_{\boldsymbol{i}}\left(\boldsymbol{b}_{\boldsymbol{i}}\right), \boldsymbol{\pi}_{\boldsymbol{i}}\left(\boldsymbol{b}_{i+1}\right)\right)} \\
\text { is not Lagrange Reduced, } \\
\text { Langrange Reduce it. }
\end{gathered}
$$

\Downarrow

$$
\begin{aligned}
& \forall i<n,\left\|\boldsymbol{b}_{i}^{*}\right\| \leq \sqrt{4 / 3} \cdot\left\|\boldsymbol{b}_{i+1}^{*}\right\| \\
& \Downarrow
\end{aligned}
$$

$$
\left\|b_{1}\right\| \leq \sqrt{4 / 3}^{\frac{n-1}{2}} \cdot \operatorname{vol}(\mathcal{L})^{1 / n}
$$

LLL Reduction

$$
\begin{gathered}
\text { Definition } \\
\text { A basis } \boldsymbol{B} \text { of } \mathcal{L} \text { is LLL-reduced if } \\
\left(\boldsymbol{\pi}_{\boldsymbol{i}}\left(\boldsymbol{b}_{\boldsymbol{i}}\right), \boldsymbol{\pi}_{\boldsymbol{i}}\left(\boldsymbol{b}_{\boldsymbol{i}+\boldsymbol{1}}\right)\right) \text { is Lagrange Reduced } \\
\text { for all } \boldsymbol{i}<\boldsymbol{n} .
\end{gathered}
$$

Algorithm

While $\exists i$ s.t. $\quad\left(\pi_{i}\left(\boldsymbol{b}_{i}\right), \pi_{i}\left(\boldsymbol{b}_{i+1}\right)\right)$
is not Lagrange Reduced, Langrange Reduce it.
$\underline{\text { Termination in poly-time: }}$
Requires a slight relaxation. (ϵ-Lagrange Reduced)

Proof argument:

$$
P=\sum_{i \leq n}(n+1-i) \cdot \log \left\|b_{i}^{*}\right\|
$$

Decreases by ϵ at each step and is lower-bounded.

BKZ algorithm

- Define the projected sublattice basis $\boldsymbol{B}_{\mathrm{l}: r}:=\left(\pi_{/}\left(\boldsymbol{b}_{l}\right), \ldots, \pi_{/}\left(\boldsymbol{b}_{r-1}\right)\right)$.

BKZ algorithm

- Define the projected sublattice basis $\boldsymbol{B}_{I: r}:=\left(\boldsymbol{\pi}_{l}\left(\boldsymbol{b}_{l}\right), \ldots, \pi_{l}\left(\boldsymbol{b}_{r-1}\right)\right)$. - For $\kappa=1, \ldots, n$ solve SVP in $\mathcal{L}\left(B_{\kappa: \min \{n+1, \kappa+\beta\}}\right)$ and replace \boldsymbol{b}_{κ}.

BKZ algorithm

- Define the projected sublattice basis $\boldsymbol{B}_{I: r}:=\left(\boldsymbol{\pi}_{l}\left(\boldsymbol{b}_{l}\right), \ldots, \pi_{l}\left(\boldsymbol{b}_{r-1}\right)\right)$.
- For $\kappa=1, \ldots, n$ solve SVP in $\mathcal{L}\left(B_{\kappa: \min \{n+1, \kappa+\beta\}}\right)$ and replace \boldsymbol{b}_{κ}.

BKZ algorithm

- Define the projected sublattice basis $\boldsymbol{B}_{l: r}:=\left(\boldsymbol{\pi}_{l}\left(\boldsymbol{b}_{l}\right), \ldots, \pi_{l}\left(\boldsymbol{b}_{r-1}\right)\right)$.
- For $\kappa=1, \ldots, n$ solve SVP in $\mathcal{L}\left(B_{\kappa: \min \{n+1, \kappa+\beta\}}\right)$ and replace \boldsymbol{b}_{κ}.
- Reduction better for larger blocksize β, but cost $2^{0.292 \beta+o(n)}$.

BKZ algorithm

- Define the projected sublattice basis $\boldsymbol{B}_{l: r}:=\left(\boldsymbol{\pi}_{l}\left(\boldsymbol{b}_{l}\right), \ldots, \pi_{l}\left(\boldsymbol{b}_{r-1}\right)\right)$.
- For $\kappa=1, \ldots, n$ solve SVP in $\mathcal{L}\left(B_{\kappa: \min \{n+1, \kappa+\beta\}}\right)$ and replace \boldsymbol{b}_{κ}.
- Reduction better for larger blocksize β, but cost $2^{0.292 \beta+o(n)}$.
- Behaviour well understood for 'random' lattices. [GSA]

Recap

We have seen:

- SVP can be solved in time $\mathbf{2}^{\mathbf{0 . 2 9 2 n + o (n)}}$ via lattice sieving

Recap

We have seen:

- SVP can be solved in time $2^{\mathbf{0 . 2 9 2 n + o (n)}}$ via lattice sieving - Lattice reduction: flattening the basis profile

Recap

We have seen:

- SVP can be solved in time $\mathbf{2}^{\mathbf{0 . 2 9 2 n + o (n)}}$ via lattice sieving
- Lattice reduction: flattening the basis profile

LLL algorithm:
SVP for rank 2
(Lagrange reduction)

$$
\left\|b_{1}\right\| \leq \sqrt{4 / 3^{\frac{n-1}{2}}} \cdot \operatorname{vol}(\mathcal{L})^{1 / n}
$$

Recap

We have seen:

- SVP can be solved in time $\mathbf{2}^{\mathbf{0 . 2 9 2 n + o (n)}}$ via lattice sieving
- Lattice reduction: flattening the basis profile

LLL algorithm:

BKZ algorithm:

SVP for rank β
(sieving)

$$
\left\|b_{1}\right\| \leq O(\beta)^{\frac{n-1}{2(\beta-1)}} \cdot \operatorname{vol}(\mathcal{L})^{1 / n}
$$

Recap

We have seen:

- SVP can be solved in time $\mathbf{2}^{\mathbf{0 . 2 9 2 n + o (n)}}$ via lattice sieving
- Lattice reduction: flattening the basis profile

LLL algorithm:

BKZ algorithm:

- Same algorithms also solve promise variants uSVP and BDD

Conclusion

We have seen:

- Basics of lattice theory and hard problems

Conclusion

We have seen:

- Basics of lattice theory and hard problems
- How these hard problems can be used for cryptography

Conclusion

We have seen:

- Basics of lattice theory and hard problems
- How these hard problems can be used for cryptography
- The best (known) algorithms to solve these problems

Conclusion

We have seen:

- Basics of lattice theory and hard problems
- How these hard problems can be used for cryptography
- The best (known) algorithms to solve these problems

What's next?

- Keygen: what families of lattices to use? (SIS, LWE, NTRU, ...)

Conclusion

We have seen:

- Basics of lattice theory and hard problems
- How these hard problems can be used for cryptography
- The best (known) algorithms to solve these problems

What's next?

- Keygen: what families of lattices to use? (SIS, LWE, NTRU, ...)
- Why do we trust these lattices? (hardness reductions)

Conclusion

We have seen:

- Basics of lattice theory and hard problems
- How these hard problems can be used for cryptography
- The best (known) algorithms to solve these problems

What's next?

- Keygen: what families of lattices to use? (SIS, LWE, NTRU, ...)
- Why do we trust these lattices? (hardness reductions)
- More efficiency: algebraic lattices (ideal and module lattices)

Part II

Part I
Lattice theory

- Lattices
- Hard problems

Cryptography

- Trapdoor bases
- Encryption, Signature

Cryptanalysis

- Lattice Sieving
- Basis Reduction

Part II

Lattices used in cryptography

- SIS, LWE, decLWE
- Security proofs

Hardness Reductions

- search to decision
- WC to AC reductions

Algebraic Lattices

- Ideal and module lattices
- NTRU, RLWE, mod-LWE

Limitations of SVP (and CVP)

```
SVP and CVP are hard in the worst case
```


Limitations of SVP (and CVP)

- no efficient algorithm that works for any lattice

Limitations of SVP (and CVP)

- no efficient algorithm that works for any lattice
- but for some lattice it might be easier

Limitations of SVP (and CVP)

```
SVP and CVP are hard in the worst case
```

- no efficient algorithm that works for any lattice
- but for some lattice it might be easier

For crypto, we need problems that are hard on average
(i.e., for a random instance, the problem is hard with overwhelming probability)

random q-ary lattices

Notations: $\boldsymbol{q}, \boldsymbol{n}, \boldsymbol{m}$ integers, $\mathbf{1} \leq \boldsymbol{n} \ll \boldsymbol{m}, \mathbb{Z}_{\boldsymbol{q}}:=\mathbb{Z} / \boldsymbol{q} \mathbb{Z}$

- A lattice $\mathcal{L} \subset \mathbb{R}^{\boldsymbol{m}}$ of dimension \boldsymbol{m} is called \boldsymbol{q}-ary if

$$
\boldsymbol{q} \mathbb{Z}^{\boldsymbol{m}} \subset \mathcal{L} \subset \mathbb{Z}^{\boldsymbol{m}}
$$

- Let $\boldsymbol{A} \in \mathbb{Z}_{\boldsymbol{q}}^{\boldsymbol{m} \times \boldsymbol{n}}$, then we define the row-generated \boldsymbol{q}-ary lattice

$$
\Lambda_{q}(A):=\left\{y \in \mathbb{Z}^{m}: y \equiv A x \bmod q \text { for some } x \in \mathbb{Z}_{q}^{n}\right\}=A \mathbb{Z}^{n}+q \mathbb{Z}^{m}
$$

- and the parity-check \boldsymbol{q}-ary lattice

$$
\Lambda_{q}^{\perp}(A):=\left\{x \in \mathbb{Z}^{m}: x^{\top} A \equiv 0 \bmod q\right\}=\operatorname{ker}\left(A^{\top}: \mathbb{Z}^{m} \rightarrow \mathbb{Z}_{q}^{n}\right)
$$

- Exercise: if \boldsymbol{q} prime and \boldsymbol{A} has full column-rank, then

$$
\operatorname{vol}\left(\Lambda_{q}(A)\right)=q^{m-n}, \quad \operatorname{vol}\left(\Lambda_{q}^{\perp}(A)\right)=q^{n}
$$

Example

$(0, q)$
(q, q)
Suppose $\boldsymbol{q}=5, \boldsymbol{n}=\mathbf{1}, \boldsymbol{m}=2$, $A=\binom{1}{2}$
$\Lambda_{q}(A)=A \mathbb{Z}^{n}+q \mathbb{Z}^{m}=\binom{1}{2} \cdot \mathbb{Z}+5 \mathbb{Z}^{2}$
$(q, 0)$

Example

$(0, q)$
(q, q)
Suppose $\boldsymbol{q}=5, \boldsymbol{n}=1, m=2$, $A=\binom{1}{2}$

$$
\Lambda_{q}(A)=A \mathbb{Z}^{n}+q \mathbb{Z}^{m}=\binom{1}{2} \cdot \mathbb{Z}+5 \mathbb{Z}^{2}
$$

$(q, 0)$

Example

$(0, q)$

$$
\begin{gathered}
(q, q) \quad \text { Suppose } q=5, n=1, m=2 \\
A=\binom{1}{2} \\
\Lambda_{q}(A)=A \mathbb{Z}^{n}+q \mathbb{Z}^{m}=\binom{1}{2} \cdot \mathbb{Z}+5 \mathbb{Z}^{2}
\end{gathered}
$$

Example

$(0, q)$

Suppose $\boldsymbol{q}=\mathbf{5}, \boldsymbol{n}=\mathbf{1}, \boldsymbol{m}=2$,

$$
A=\binom{1}{2}
$$

$$
\Lambda_{q}(A)=A \mathbb{Z}^{n}+q \mathbb{Z}^{m}=\binom{1}{2} \cdot \mathbb{Z}+5 \mathbb{Z}^{2}
$$

Example

Example

Suppose $q=5, n=1, m=2$,

$$
A=\binom{1}{2}
$$

$$
\Lambda_{q}(A)=A \mathbb{Z}^{n}+q \mathbb{Z}^{m}=\binom{1}{2} \cdot \mathbb{Z}+5 \mathbb{Z}^{2}
$$

Example

Suppose $\boldsymbol{q}=\mathbf{5}, \boldsymbol{n}=\mathbf{1}, \boldsymbol{m}=2$,

$$
A=\binom{1}{2}
$$

$$
\Lambda_{q}(A)=A \mathbb{Z}^{n}+q \mathbb{Z}^{m}=\binom{1}{2} \cdot \mathbb{Z}+5 \mathbb{Z}^{2}
$$

Parity-check representation:

$$
\begin{gathered}
\Lambda_{q}\left(\binom{1}{2}\right)=\Lambda_{q}^{\perp}\left(\binom{-2}{1}\right) \\
=\left\{(x, y) \in \mathbb{Z}^{2}:-2 x+y \equiv 0 \bmod q\right\}
\end{gathered}
$$

- Random q-ary lattice: sample $\boldsymbol{A} \in \mathcal{U}\left(\mathbb{Z}_{q}^{m \times n}\right)$, and consider $\boldsymbol{\Lambda}_{q}(\boldsymbol{A})$

Family of random q-ary lattices

- Random \boldsymbol{q}-ary lattice: sample $\boldsymbol{A} \in \mathcal{U}\left(\mathbb{Z}_{\boldsymbol{q}}^{\boldsymbol{m} \times \boldsymbol{n}}\right)$, and consider $\boldsymbol{\Lambda}_{\boldsymbol{q}}(\boldsymbol{A})$
- equivalently: sample $\boldsymbol{A} \in \mathcal{U}\left(\mathbb{Z}_{q}^{\boldsymbol{m} \times(\boldsymbol{m}-\boldsymbol{n})}\right)$, and consider $\boldsymbol{\Lambda}_{q}^{\perp}(\boldsymbol{A})$

Family of random q-ary lattices

- Random q-ary lattice: sample $\boldsymbol{A} \in \mathcal{U}\left(\mathbb{Z}_{\boldsymbol{q}}^{\boldsymbol{m} \times \boldsymbol{n}}\right)$, and consider $\boldsymbol{\Lambda}_{\boldsymbol{q}}(\boldsymbol{A})$
- equivalently: sample $\boldsymbol{A} \in \mathcal{U}\left(\mathbb{Z}_{q}^{\boldsymbol{m} \times(\boldsymbol{m}-\boldsymbol{n})}\right)$, and consider $\boldsymbol{\Lambda}_{q}^{\perp}(\boldsymbol{A})$
- Defines average-case problems!
- Random \boldsymbol{q}-ary lattice: sample $\boldsymbol{A} \in \boldsymbol{\mathcal { U }}\left(\mathbb{Z}_{\boldsymbol{q}}^{\boldsymbol{m} \times \boldsymbol{n}}\right)$, and consider $\boldsymbol{\Lambda}_{\boldsymbol{q}}(\boldsymbol{A})$
- equivalently: sample $\boldsymbol{A} \in \mathcal{U}\left(\mathbb{Z}_{\boldsymbol{q}}^{\boldsymbol{m} \times(\boldsymbol{m}-\boldsymbol{n})}\right)$, and consider $\boldsymbol{\Lambda}_{\boldsymbol{q}}^{\perp}(\boldsymbol{A})$
- Defines average-case problems!
- For $\boldsymbol{X} \in\{$ approxSVP, approxCVP, uSVP, BDD $\}$ and $\boldsymbol{m}=\operatorname{poly}(\boldsymbol{n})$ we have

```
    Solving X Solving X with
in any lattice \geq non-negligible prob.
    of rank m in a random q-ary lattice
```

- These average-case problems are also known as (I)SIS and LWE.
- Random \boldsymbol{q}-aryl lattice: sample $\boldsymbol{A} \in \boldsymbol{\mathcal { U }}\left(\mathbb{Z}_{\boldsymbol{q}}^{\boldsymbol{m} \times \boldsymbol{n}}\right)$, and consider $\boldsymbol{\Lambda}_{\boldsymbol{q}}(\boldsymbol{A})$
- equivalently: sample $\boldsymbol{A} \in \mathcal{U}\left(\mathbb{Z}_{\boldsymbol{q}}^{\boldsymbol{m} \times(\boldsymbol{m}-\boldsymbol{n})}\right)$, and consider $\boldsymbol{\Lambda}_{\boldsymbol{q}}^{\perp}(\boldsymbol{A})$
- Defines average-case problems!
- For $\boldsymbol{X} \in\{$ approxSVP, approxCVP, uSVP, BDD $\}$ and $\boldsymbol{m}=\operatorname{poly}(\boldsymbol{n})$ we have

| Solving \boldsymbol{X}
 in any lattice
 of rank \boldsymbol{m} |
| :---: |\geq| Solving \boldsymbol{X} with |
| :---: |
| non-negligible prob. |
| in a random \boldsymbol{q}-aryl lattice |$\quad \gtrsim$| Solving approx-SVP |
| :---: |
| in any lattice |
| of rank $\min (\boldsymbol{n}, \boldsymbol{m}-\boldsymbol{n})$ |

- These average-case problems are also known as (I)SIS and LWE.
- Random \boldsymbol{q}-ary lattice: sample $\boldsymbol{A} \in \boldsymbol{\mathcal { U }}\left(\mathbb{Z}_{\boldsymbol{q}}^{\boldsymbol{m} \times \boldsymbol{n}}\right)$, and consider $\boldsymbol{\Lambda}_{\boldsymbol{q}}(\boldsymbol{A})$
- equivalently: sample $\boldsymbol{A} \in \mathcal{U}\left(\mathbb{Z}_{\boldsymbol{q}}^{\boldsymbol{m} \times(\boldsymbol{m}-\boldsymbol{n})}\right)$, and consider $\boldsymbol{\Lambda}_{\boldsymbol{q}}^{\perp}(\boldsymbol{A})$
- Defines average-case problems!
- For $\boldsymbol{X} \in\{$ approxSVP, approxCVP, uSVP, BDD $\}$ and $\boldsymbol{m}=\boldsymbol{p o l y}(\boldsymbol{n})$ we have

| Solving \boldsymbol{X}
 in any lattice
 of rank \boldsymbol{m} |
| :---: |\geq| Solving \boldsymbol{X} with |
| :---: |
| non-negligible prob. |
| in a random \boldsymbol{q}-ary lattice |$\quad \gtrsim$| Solving approx-SVP |
| :---: |
| in any lattice |
| ofrank $\min (\boldsymbol{n}, \boldsymbol{m}-\boldsymbol{n})$ |

```
Worst-case to average-case reduction
```

- Random \boldsymbol{q}-aryl lattice: sample $\boldsymbol{A} \in \boldsymbol{\mathcal { U }}\left(\mathbb{Z}_{\boldsymbol{q}}^{\boldsymbol{m} \times \boldsymbol{n}}\right)$, and consider $\boldsymbol{\Lambda}_{\boldsymbol{q}}(\boldsymbol{A})$
- equivalently: sample $\boldsymbol{A} \in \mathcal{U}\left(\mathbb{Z}_{\boldsymbol{q}}^{\boldsymbol{m} \times(\boldsymbol{m}-\boldsymbol{n})}\right)$, and consider $\boldsymbol{\Lambda}_{\boldsymbol{q}}^{\perp}(\boldsymbol{A})$
- Defines average-case problems!
- For $\boldsymbol{X} \in\{$ approxSVP, approxCVP, uSVP, BDD $\}$ and $\boldsymbol{m}=\boldsymbol{p o l y}(\boldsymbol{n})$ we have

| Solving \boldsymbol{X}
 in any lattice
 of rank \boldsymbol{m} |
| :---: |\geq| Solving \boldsymbol{X} with |
| :---: |
| non-negligible prob. |
| in a random \boldsymbol{q}-aryl lattice |$\quad \gtrsim$| Solving approx-SVP |
| :---: |
| in any lattice |
| ofrank $\min (\boldsymbol{n}, \boldsymbol{m}-\boldsymbol{n})$ |

```
Worst-case to average-case reduction
```

- These average-case problems are also known as (I)SIS and LWE.

The SIS problem

Notations: $\boldsymbol{q}, \boldsymbol{B}$ integers, $\mathbf{1} \leq \boldsymbol{B} \ll \boldsymbol{q}, \mathbb{Z}_{\boldsymbol{q}}:=\mathbb{Z} / \boldsymbol{q} \mathbb{Z}$

SIS (Short Integer Solution) [Ajt96]

Parameters: \boldsymbol{B} and \boldsymbol{q}
Problem: Given $\boldsymbol{A} \leftarrow \mathcal{U}\left(\mathbb{Z}_{\boldsymbol{q}}^{\boldsymbol{m} \times \boldsymbol{n}}\right) \quad$ (with $n \log q<m$)
Find $x \in \mathbb{Z}^{\boldsymbol{m}}$ s.t. $\quad \boldsymbol{x}^{\boldsymbol{T}} \boldsymbol{A}=\mathbf{0} \bmod \boldsymbol{q}$ with $\|\boldsymbol{x}\| \leq \boldsymbol{B}$ and $\boldsymbol{x} \neq \mathbf{0}$.

The SIS problem

Notations: $\quad \boldsymbol{q}, \boldsymbol{B}$ integers, $\mathbf{1} \leq \boldsymbol{B} \ll \boldsymbol{q}, \mathbb{Z}_{\boldsymbol{q}}:=\mathbb{Z} / \boldsymbol{q} \mathbb{Z}$

SIS (Short Integer Solution) [Ajt96]

Parameters: \boldsymbol{B} and \boldsymbol{q}
Problem: Given $\boldsymbol{A} \leftarrow \mathcal{U}\left(\mathbb{Z}_{\boldsymbol{q}}^{\boldsymbol{m} \times \boldsymbol{n}}\right) \quad$ (with $n \log q<m$)
Find $x \in \mathbb{Z}^{\boldsymbol{m}}$ s.t. $\quad \boldsymbol{x}^{\boldsymbol{T}} \boldsymbol{A}=\mathbf{0} \bmod \boldsymbol{q}$ with $\|x\| \leq B$ and $x \neq 0$.

$$
\begin{gathered}
\text { Solving SIS } \\
\text { with non-negligible } \gtrsim \\
\text { probability }
\end{gathered}
$$

Solving approx-SVP
in any lattice of rank n

The SIS problem

Notations: $\quad \boldsymbol{q}, \boldsymbol{B}$ integers, $\mathbf{1} \leq \boldsymbol{B} \ll \boldsymbol{q}, \mathbb{Z}_{\boldsymbol{q}}:=\mathbb{Z} / \boldsymbol{q} \mathbb{Z}$

SIS (Short Integer Solution) [Ajt96]

Parameters: \boldsymbol{B} and \boldsymbol{q}

Problem: Given $\boldsymbol{A} \leftarrow \mathcal{U}\left(\mathbb{Z}_{\boldsymbol{q}}^{\boldsymbol{m} \times \boldsymbol{n}}\right) \quad$ (with $n \log q<m$)
Find $x \in \mathbb{Z}^{\boldsymbol{m}}$ s.t. $\quad \boldsymbol{x}^{\boldsymbol{T}} \boldsymbol{A}=\mathbf{0} \bmod \boldsymbol{q}$ with $\|\boldsymbol{x}\| \leq \boldsymbol{B}$ and $\boldsymbol{x} \neq \mathbf{0}$.

$$
\begin{gathered}
\text { Solving approx-SVP } \\
\text { in any lattice } \\
\text { lattice of rank } \boldsymbol{m}
\end{gathered} \geq \begin{array}{ccc}
\text { Solving SIS } \\
\text { with non-negligible } \\
\text { probability }
\end{array} \gtrsim \begin{gathered}
\text { Solving approx-SVP } \\
\text { in any lattice } \\
\text { of rank } \boldsymbol{n}
\end{gathered}
$$

The SIS problem

Notations: $\boldsymbol{q}, \boldsymbol{B}$ integers, $\mathbf{1} \leq \boldsymbol{B} \ll \boldsymbol{q}, \mathbb{Z}_{\boldsymbol{q}}:=\mathbb{Z} / \boldsymbol{q} \mathbb{Z}$

ISIS (Inhomogeneous Short Integer Solution) [Ajt96]

Parameters: \boldsymbol{B} and \boldsymbol{q}
Problem: Given $\boldsymbol{A} \leftarrow \mathcal{U}\left(\mathbb{Z}_{\boldsymbol{q}}^{\boldsymbol{m} \times \boldsymbol{n}}\right), \quad \boldsymbol{y} \leftarrow \mathcal{U}\left(\mathbb{Z}_{\boldsymbol{q}}^{\boldsymbol{n}}\right)$
Find $x \in \mathbb{Z}^{\boldsymbol{m}}$ s.t. $\quad \boldsymbol{x}^{\boldsymbol{T}} \boldsymbol{A}=\boldsymbol{y}^{\boldsymbol{T}} \bmod \boldsymbol{q}$ with $\|\boldsymbol{x}\| \leq \boldsymbol{B}$.

$$
\begin{gathered}
\text { Solving approx-CVP } \\
\text { in any lattice } \\
\text { lattice of rank } \boldsymbol{m}
\end{gathered} \geq \begin{array}{ccc}
\text { Solving ISIS } \\
\text { with non-negligible }
\end{array} \gtrsim \begin{gathered}
\text { Solving approx-SVP } \\
\text { in any lattice } \\
\text { of rank } \boldsymbol{n}
\end{gathered}
$$

(I)SIS is as hard as worst-case lattice problems

Theorem [Ajt96]

For any $\boldsymbol{m}=\boldsymbol{p o l y}(\boldsymbol{n})$ and $\boldsymbol{B}>\mathbf{0}$ and sufficiently large $\boldsymbol{q} \geq \boldsymbol{B} \cdot \operatorname{poly}(\boldsymbol{n})$, it holds that solving SIS is at least as hard as solving γ-SIVP on arbitrary \boldsymbol{n}-dimensional lattice, for some approximation factor $\gamma=B \cdot \operatorname{poly}(n)$.
(SIVP $=$ shortest independent vectors problems.
Objective: find \boldsymbol{n} short linearly independent vectors in the lattice)

(I)SIS is as hard as worst-case lattice problems

Theorem [Ajt96]

For any $\boldsymbol{m}=\boldsymbol{p o l y}(\boldsymbol{n})$ and $\boldsymbol{B}>\mathbf{0}$ and sufficiently large $\boldsymbol{q} \geq \boldsymbol{B} \cdot \operatorname{poly}(\boldsymbol{n})$, it holds that solving SIS is at least as hard as solving γ-SIVP on arbitrary \boldsymbol{n}-dimensional lattice, for some approximation factor $\gamma=B \cdot \operatorname{poly}(n)$.
(SIVP $=$ shortest independent vectors problems.
Objective: find \boldsymbol{n} short linearly independent vectors in the lattice)

- the poly quantities have been improved in more recent works
- for typical parameters: SIS \cong ISIS
- see [Pei16] for a survey

SIS is a lattice problem

SIS (Short Integer Solution)

$$
\text { Given } \left.\boldsymbol{A} \leftarrow \mathcal{U}\left(\mathbb{Z}_{\boldsymbol{q}}^{\boldsymbol{m} \times \boldsymbol{n}}\right) \quad \text { (with } n \log q<m\right)
$$

Find $x \in \mathbb{Z}^{m}$ with $\|x\| \leq B$ and $x \neq 0$ s.t. $x^{\boldsymbol{T}} A=0 \operatorname{modq}$.

SIS is a lattice problem

SIS (Short Integer Solution)

$$
\text { Given } \boldsymbol{A} \leftarrow \mathcal{U}\left(\mathbb{Z}_{\boldsymbol{q}}^{\boldsymbol{m} \times \boldsymbol{n}}\right) \quad(\text { with } n \log q<m)
$$

Find $x \in \mathbb{Z}^{m}$ with $\|x\| \leq B$ and $x \neq 0$ s.t. $x^{\boldsymbol{T}} A=0 \quad \bmod q$.

$$
\Lambda_{q}^{\perp}(A)=\left\{x \in \mathbb{Z}^{m} \mid x^{T} A=0 \bmod q\right\}
$$

SIS is a lattice problem

SIS (Short Integer Solution)

$$
\text { Given } \boldsymbol{A} \leftarrow \mathcal{U}\left(\mathbb{Z}_{\boldsymbol{q}}^{\boldsymbol{m} \times \boldsymbol{n}}\right) \quad(\text { with } n \log q<m)
$$

Find $x \in \mathbb{Z}^{\boldsymbol{m}}$ with $\|\boldsymbol{x}\| \leq \boldsymbol{B}$ and $\boldsymbol{x} \neq 0$ s.t. $\boldsymbol{x}^{\boldsymbol{T}} \boldsymbol{A}=\operatorname{modq}$.

$$
\Lambda_{q}^{\perp}(A)=\left\{x \in \mathbb{Z}^{m} \mid x^{T} A=0 \bmod q\right\}
$$

$$
\text { SIS } \approx \text { approx-SVP in random } \boldsymbol{\Lambda}_{q}^{\perp}(\boldsymbol{A})
$$

Average-case approx-SVP problem

SIS is a lattice problem

SIS (Short Integer Solution)

Given $\boldsymbol{A} \leftarrow \mathcal{U}\left(\mathbb{Z}_{\boldsymbol{q}}^{\boldsymbol{m} \times \boldsymbol{n}}\right), \quad \boldsymbol{y} \leftarrow \mathcal{U}\left(\mathbb{Z}_{\boldsymbol{q}}^{\boldsymbol{n}}\right) \quad$ (with $n \log q<m$)
Find $x \in \mathbb{Z}^{\boldsymbol{m}}$ with $\|x\| \leq \boldsymbol{B} \quad$ s.t. $\quad \boldsymbol{x}^{\boldsymbol{T}} \quad \boldsymbol{A}=\boldsymbol{y}^{\boldsymbol{T}} \bmod \boldsymbol{q}$.

$$
\Lambda_{q}^{\perp}(A)=\left\{x \in \mathbb{Z}^{m} \mid x^{T} A=0 \bmod q\right\}
$$

ISIS \approx approx-CVP in random $\boldsymbol{\Lambda}_{\boldsymbol{q}}^{\perp}(\boldsymbol{A})$
Average-case approx-CVP problem

Trapdoor basis

Lemma [Ajt99]

One can efficiently create a uniform SIS lattice $\boldsymbol{\Lambda}_{q}^{\perp}(\boldsymbol{A})$ together with a short basis of it.

Trapdoor basis

Lemma [Ajt99]

One can efficiently create a uniform SIS lattice $\boldsymbol{\Lambda}_{q}^{\perp}(\boldsymbol{A})$ together with a short basis of it.

Idea: start with a short basis, then perturb and randomize it

Trapdoor basis

Lemma [Ajt99]

One can efficiently create a uniform SIS lattice $\boldsymbol{\Lambda}_{\boldsymbol{q}}^{\perp}(\boldsymbol{A})$ together with a short basis of it.

Idea: start with a short basis, then perturb and randomize it

Hash-and-sign signature scheme from SIS

Sign: hash message to $\boldsymbol{t} \in \mathbb{Z}_{\boldsymbol{q}}^{\boldsymbol{m}}$, sample nearby $s \in \Lambda_{q}^{\perp}(A)$ with sk Verify: $\boldsymbol{s} \in \boldsymbol{\Lambda}_{\boldsymbol{q}}^{\perp}(\boldsymbol{A}) \wedge\|\boldsymbol{t}-\boldsymbol{s}\| \leq \boldsymbol{B}$

Hash-and-sign signature scheme from SIS

> Sign: hash message to $\boldsymbol{t} \in \mathbb{Z}_{\boldsymbol{q}}^{\boldsymbol{m}}$, sample nearby $\boldsymbol{s} \in \boldsymbol{\Lambda}_{\boldsymbol{q}}^{\perp}(\boldsymbol{A})$ with sk Verify: $\boldsymbol{s} \in \boldsymbol{\Lambda}_{\boldsymbol{q}}^{\perp}(\boldsymbol{A}) \wedge\|\boldsymbol{t}-\boldsymbol{s}\| \leq \boldsymbol{B}$

Security proof
key-recovery \geq SIS problem
signature forgery \geq ISIS problem
(assuming no leakage from sampling
can be proven in Random Oracle Model) .
Signature scheme based on hard average-case lattice problem

The LWE problem

LWE (Learning With Errors) [Reg05]

Sample $\quad \boldsymbol{A} \leftarrow \mathcal{U}\left(\mathbb{Z}_{q}^{m \times n}\right), \quad s \leftarrow \mathcal{U}\left(\mathbb{Z}_{q}^{n}\right)$ and $\quad \boldsymbol{e} \leftarrow \mathcal{U}\left(\{-\boldsymbol{B}, \cdots, B\}^{m}\right)$ Given \boldsymbol{A} and \boldsymbol{b}, where $\boldsymbol{b}:=\boldsymbol{A} \boldsymbol{s}^{\boldsymbol{b}} \bmod \boldsymbol{q}$
Recover s or \boldsymbol{e}

The LWE problem

LWE (Learning With Errors) [Reg05]

Sample $\boldsymbol{A} \leftarrow \mathcal{U}\left(\mathbb{Z}_{\boldsymbol{q}}^{\boldsymbol{m} \times \boldsymbol{n}}\right), \quad \boldsymbol{s} \leftarrow \mathcal{U}\left(\mathbb{Z}_{\boldsymbol{q}}^{\boldsymbol{n}}\right)$ and $\boldsymbol{e} \leftarrow \mathcal{U}\left(\{-\boldsymbol{B}, \cdots, B\}^{\boldsymbol{m}}\right)$ Given \boldsymbol{A} and \boldsymbol{b}, where $[\boldsymbol{b}:=\boldsymbol{A} \boldsymbol{s}+\boldsymbol{e} \bmod \boldsymbol{q}$

Recover \boldsymbol{s} or \boldsymbol{e}

Remark. Sometimes \boldsymbol{S} is small in $\mathbb{Z}_{\boldsymbol{q}}$ (not uniform)

- this is (almost) equivalent
- prove it (hint: you are allowed to change m)

The LWE problem

LWE (Learning With Errors) [Reg05]

$$
\begin{aligned}
& \text { Sample } \boldsymbol{A} \leftarrow \mathcal{U}\left(\mathbb{Z}_{q}^{m \times n}\right), \boldsymbol{s} \leftarrow \mathcal{U}\left(\mathbb{Z}_{q}^{n}\right) \text { and } \boldsymbol{e} \leftarrow \mathcal{U}\left(\{-\boldsymbol{B}, \cdots, B\}^{m}\right) \\
& \text { Given } \boldsymbol{A} \text { and } \boldsymbol{b}, \text { where } \boldsymbol{b}:=\boldsymbol{A}+\boldsymbol{s}+\boldsymbol{\operatorname { m o d } \boldsymbol { q }}
\end{aligned}
$$

Recover s or e

$$
\begin{gathered}
\text { Solving LWE } \\
\text { with non-negligible } \\
\text { probability }
\end{gathered} \underset{\text { quantumly! }!}{\gtrsim} \begin{gathered}
\text { Solving approx-SVP } \\
\text { in any lattice } \\
\text { of rank } n
\end{gathered}
$$

The LWE problem

LWE (Learning With Errors) [Reg05]

$$
\begin{aligned}
& \text { Sample } \boldsymbol{A} \leftarrow \mathcal{U}\left(\mathbb{Z}_{\boldsymbol{q}}^{\boldsymbol{m} \times \boldsymbol{n}}\right), \quad \boldsymbol{s} \leftarrow \mathcal{U}\left(\mathbb{Z}_{\boldsymbol{q}}^{\boldsymbol{n}}\right) \text { and } \boldsymbol{e} \leftarrow \mathcal{U}\left(\{-B, \cdots, B\}^{m}\right) \\
& \text { Given } \boldsymbol{A} \text { and } \boldsymbol{b}, \text { where } \boldsymbol{b}:=\boldsymbol{A}+\boldsymbol{s}+\boldsymbol{e} \bmod \boldsymbol{q}
\end{aligned}
$$

Recover s or e
Solving BDD
in any lattice

of rank $\boldsymbol{m}$$\gtrsim$\begin{tabular}{c}
Solving LWE

with non-negligible

probability

$\underset{\text { quantumly! }}{\gtrsim}$

Solving approx-SVP

in any lattice

of rank \boldsymbol{n}
\end{tabular}

LWE is quantumly as hard as worst-case lattice problems

Theorem [Reg05]

For any $\boldsymbol{m}=\operatorname{poly}(n)$, modulus $\boldsymbol{q} \leq 2^{\text {poly(n) }}$ and $B \geq 2 \sqrt{\boldsymbol{n}}$, solving LWE is at least as hard as quantumly solving γ-SIVP on arbitrary \boldsymbol{n}-dimensional lattice, for some approximation factor $\gamma=\tilde{\boldsymbol{O}}(\boldsymbol{n} \cdot \boldsymbol{q} / \boldsymbol{B})$.
© the reduction is for a variant of LWE where \boldsymbol{s} and \boldsymbol{e} are sampled from a discrete Gaussian distribution of parameter B ©

LWE is quantumly as hard as worst-case lattice problems

Theorem [Reg05]

For any $\boldsymbol{m}=\boldsymbol{p o l y}(n)$, modulus $\boldsymbol{q} \leq 2^{\text {poly(} n)}$ and $B \geq 2 \sqrt{n}$, solving LWE is at least as hard as quantumly solving γ-SIVP on arbitrary \boldsymbol{n}-dimensional lattice, for some approximation factor $\gamma=\tilde{\boldsymbol{O}}(\boldsymbol{n} \cdot \boldsymbol{q} / \boldsymbol{B})$.
\% the reduction is for a variant of LWE where s and e are sampled from a discrete Gaussian distribution of parameter B ©

Remark: the reduction can be made fully classical [Pei09, BLPRS13]

[^0]
LWE is a lattice problem

LWE instance $(\overline{\boldsymbol{A}}, \boldsymbol{b}=\boldsymbol{A} \boldsymbol{s}+\boldsymbol{e} \bmod \boldsymbol{q}), \boldsymbol{e}$ small

LWE is a lattice problem

LWE instance $(\bar{A}, \boldsymbol{b}=\boldsymbol{A} \boldsymbol{s}+\boldsymbol{e} \bmod \boldsymbol{q}), \boldsymbol{e}$ small target $\boldsymbol{b}=\boldsymbol{v}+\boldsymbol{e}$
lattice $\boldsymbol{\Lambda}_{q}(\boldsymbol{A})$

- As mod q 0

LWE is a lattice problem

LWE instance $(\bar{A}, \boldsymbol{b}=\boldsymbol{A} \boldsymbol{s}+\boldsymbol{e} \bmod \boldsymbol{q}), \boldsymbol{e}$ small
$\begin{array}{ll}\text { uSVP } & \\ & \text { lattice } \boldsymbol{\Lambda}_{\boldsymbol{q}}\left(\left(\begin{array}{cc}\boldsymbol{A} & \boldsymbol{b} \\ \mathbf{0}_{\boldsymbol{n}} & \mathbf{1}\end{array}\right)\right)\end{array}$ contains short $e^{\prime}:=\left(e^{\perp}, 1\right)^{\perp}$

As mod q 0

decision-LWE (1)

Sample $\boldsymbol{A} \leftarrow \mathcal{U}\left(\mathbb{Z}_{q}^{m \times n}\right), \quad s \leftarrow \mathcal{U}\left(\mathbb{Z}_{q}^{n}\right)$ and $\boldsymbol{e} \leftarrow \mathcal{U}\left(\{-B, \cdots, B\}^{m}\right)$
Given \boldsymbol{A} and \boldsymbol{b}, where $\boldsymbol{b}:=\boldsymbol{A} \boldsymbol{s}+\boldsymbol{e} \bmod \boldsymbol{q}$ or $\boldsymbol{b} \leftarrow \mathcal{U}\left(\mathbb{Z}_{\boldsymbol{q}}^{\boldsymbol{m})}\right.$
Guess whether \boldsymbol{b} is uniform or not.

$$
\text { decision LWE } \Longleftrightarrow \text { (search) LWE }
$$

decision-LWE (1)

Sample $\boldsymbol{A} \leftarrow \mathcal{U}\left(\mathbb{Z}_{\boldsymbol{q}}^{\boldsymbol{m} \times \boldsymbol{n}}\right), \quad \boldsymbol{s} \leftarrow \mathcal{U}\left(\mathbb{Z}_{\boldsymbol{q}}^{\boldsymbol{n}}\right)$ and $\boldsymbol{e} \leftarrow \mathcal{U}\left(\{-\boldsymbol{B}, \cdots, B\}^{\boldsymbol{m}}\right)$
Given \boldsymbol{A} and \boldsymbol{b}, where $\boldsymbol{b}:=\boldsymbol{A} \boldsymbol{s}+\boldsymbol{e} \bmod \boldsymbol{q}$ or $\boldsymbol{b} \leftarrow \mathcal{U}\left(\mathbb{Z}_{\boldsymbol{q}}^{\boldsymbol{m}}\right)$ Guess whether b is uniform or not.

$$
\text { decision LWE } \Longleftrightarrow \text { (search) LWE }
$$

\Rightarrow decision problems can be easier to use for crypto
if dec-LWE is hard: $(\boldsymbol{A}, \boldsymbol{b}=\boldsymbol{A} \boldsymbol{s}+\boldsymbol{e} \bmod \boldsymbol{q}) \approx(\boldsymbol{A}, \boldsymbol{b})$
if dec-LWE is hard: $(\square \boldsymbol{A}, \boldsymbol{b}=\boldsymbol{A} \boldsymbol{s}+\boldsymbol{e} \bmod \boldsymbol{q}) \approx(\boldsymbol{A}, \boldsymbol{b})$

For a random \boldsymbol{q}-ary lattice:
BDD :
BDD target $\boldsymbol{b} \approx$ uniform random target
if dec-LWE is hard: $(\boldsymbol{A}, \boldsymbol{b}=\boldsymbol{A} \boldsymbol{s}+\boldsymbol{e} \bmod \boldsymbol{q}) \approx(\boldsymbol{A}, \boldsymbol{b})$

For a random \boldsymbol{q}-ary lattice:
BDD :

```
BDD target b}\approx\mathrm{ uniform random target
```

```
    random q-ary lattice with planted short vector
uSVP :
                                    \approx
    random q-ary lattice
```

$$
\text { if dec-LWE is hard: } \quad(\boldsymbol{A}, \boldsymbol{b}=\boldsymbol{A} \boldsymbol{s}+\boldsymbol{e} \bmod \boldsymbol{q}) \approx(\boldsymbol{A}, \boldsymbol{b})
$$

For a random \boldsymbol{q}-ary lattice:

```
BDD :
```

 BDD target \(\boldsymbol{b} \approx\) uniform random target
    ```
    random q-ary lattice with planted short vector
uSVP :
                                    \approx
    random q-ary lattice
```

 useful in security proofs!

KeyGen:

$$
\begin{aligned}
& \mathrm{pk}=(A, b=A s+e), P=\left(\begin{array}{cc}
A & b \\
0 & 1
\end{array}\right) . \\
& \text { sk }=e, \text { short vector }\binom{e}{1} \in \Lambda_{q}(P) .
\end{aligned}
$$

$$
\Lambda_{q}^{\perp}(P)
$$

KeyGen:

$$
\begin{aligned}
& \mathrm{pk}=(A, \boldsymbol{b}=A s+e), P=\left(\begin{array}{ll}
A & b \\
0 & 1
\end{array}\right) . \\
& \text { sk }=e, \text { short vector }\binom{e}{1} \in \Lambda_{q}(P) .
\end{aligned}
$$

Encrypt(m, pk):
Generate: BDD instance $\boldsymbol{t}=\boldsymbol{v}+\boldsymbol{e}^{\prime}$ in $\boldsymbol{\Lambda}_{\boldsymbol{q}}^{\perp}(\boldsymbol{P})$
Output: $\boldsymbol{c}=\boldsymbol{t}+\left\lfloor\frac{\boldsymbol{q}}{2}\right\rceil \cdot \boldsymbol{m} \cdot(\mathbf{0}, \ldots, \mathbf{0}, \mathbf{1})^{\top}$.

$$
\Lambda_{q}^{\perp}(P)
$$

KeyGen:

$$
\begin{aligned}
& \mathrm{pk}=(A, \boldsymbol{b}=A s+e), P=\left(\begin{array}{ll}
A & b \\
0 & 1
\end{array}\right) . \\
& \text { sk }=e, \text { short vector }\binom{e}{1} \in \Lambda_{q}(P) .
\end{aligned}
$$

Encrypt(m, pk):
Generate: BDD instance $\boldsymbol{t}=\boldsymbol{v}+\boldsymbol{e}^{\prime}$ in $\boldsymbol{\Lambda}_{\boldsymbol{q}}^{\perp}(\boldsymbol{P})$
Output: $\boldsymbol{c}=\boldsymbol{t}+\left\lfloor\frac{\boldsymbol{q}}{2}\right\rceil \cdot \boldsymbol{m} \cdot(\mathbf{0}, \ldots, \mathbf{0}, \mathbf{1})^{\top}$.

$$
\Lambda_{q}^{\perp}(P)
$$

KeyGen:

$$
\begin{aligned}
& \mathrm{pk}=(A, \boldsymbol{b}=A s+e), P=\left(\begin{array}{ll}
A & b \\
0 & 1
\end{array}\right) . \\
& \text { sk }=e, \text { short vector }\binom{e}{1} \in \Lambda_{q}(P) .
\end{aligned}
$$

Encrypt(m, pk) :
Generate: BDD instance $\boldsymbol{t}=\boldsymbol{v}+\boldsymbol{e}^{\prime}$ in $\boldsymbol{\Lambda}_{\boldsymbol{q}}^{\perp}(\boldsymbol{P})$
Output: $\boldsymbol{c}=\boldsymbol{t}+\left\lfloor\frac{\boldsymbol{q}}{2}\right\rceil \cdot \boldsymbol{m} \cdot(\mathbf{0}, \ldots, \mathbf{0}, \mathbf{1})^{\top}$.

$$
\Lambda_{q}^{\perp}(P)
$$

-

KeyGen:

$$
\begin{aligned}
& \mathrm{pk}=(A, b=A s+e), P=\left(\begin{array}{cc}
A & b \\
0 & 1
\end{array}\right) . \\
& \text { sk }=e, \text { short vector }\binom{e}{1} \in \Lambda_{q}(P) .
\end{aligned}
$$

Encrypt(m, pk) :
Generate: BDD instance $\boldsymbol{t}=\boldsymbol{v}+\boldsymbol{e}^{\prime}$ in $\boldsymbol{\Lambda}_{\boldsymbol{q}}^{\perp}(\boldsymbol{P})$
Output: $\boldsymbol{c}=\boldsymbol{t}+\left\lfloor\frac{\boldsymbol{q}}{2}\right\rceil \cdot \boldsymbol{m} \cdot(\mathbf{0}, \ldots, \mathbf{0}, \mathbf{1})^{\top}$.

KeyGen:
$\mathrm{pk}=(\boldsymbol{A}, \boldsymbol{b}=\boldsymbol{A}+\boldsymbol{e}), \boldsymbol{P}=\left(\begin{array}{ll}\boldsymbol{A} & \boldsymbol{b} \\ \mathbf{0} & 1\end{array}\right)$.
sk $=e$, short vector $\binom{e}{1} \in \Lambda_{q}(P)$.
Encrypt (m, pk):
Generate: BDD instance $\boldsymbol{t}=\boldsymbol{v}+\boldsymbol{e}^{\prime}$ in $\boldsymbol{\Lambda}_{\boldsymbol{q}}^{\perp}(\boldsymbol{P})$
Output: $\boldsymbol{c}=\boldsymbol{t}+\left\lfloor\frac{\boldsymbol{q}}{2}\right\rceil \cdot \boldsymbol{m} \cdot(\mathbf{0}, \ldots, \mathbf{0}, \mathbf{1})^{\top}$.
Decrypt (c, sk) :
Compute: $\boldsymbol{x}=\left\langle\boldsymbol{c},\binom{\boldsymbol{e}}{1}\right\rangle \bmod \boldsymbol{q}$.
Output: $\boldsymbol{m}^{\prime}= \begin{cases}\mathbf{0} & , \text { if }-\frac{\boldsymbol{q}}{4} \leq x \leq \frac{\boldsymbol{q}}{4} \\ \mathbf{1} & , \text { else }\end{cases}$

KeyGen:

$$
\begin{aligned}
& \mathrm{pk}=(A, \boldsymbol{b}=A s+e), P=\left(\begin{array}{cc}
A & b \\
0 & 1
\end{array}\right) . \\
& \text { sk }=e, \text { short vector }\binom{e}{1} \in \Lambda_{q}(P) .
\end{aligned}
$$

Encrypt (m, pk) :
Generate: BDD instance $\boldsymbol{t}=\boldsymbol{v}+\boldsymbol{e}^{\prime}$ in $\boldsymbol{\Lambda}_{\boldsymbol{q}}^{\perp}(\boldsymbol{P})$
Output: $\boldsymbol{c}=\boldsymbol{t}+\left\lfloor\frac{\boldsymbol{q}}{2}\right\rceil \cdot \boldsymbol{m} \cdot(\mathbf{0}, \ldots, \mathbf{0}, \mathbf{1})^{\top}$.
Decrypt (c, sk):
Compute: $\boldsymbol{x}=\left\langle\boldsymbol{c},\binom{\boldsymbol{e}}{1}\right\rangle \bmod \boldsymbol{q}$.
Output: $\quad \boldsymbol{m}^{\prime}= \begin{cases}\mathbf{0} & , \text { if }-\frac{\boldsymbol{q}}{4} \leq x \leq \frac{\boldsymbol{q}}{4} \\ \mathbf{1} & , \text { else }\end{cases}$

$$
\begin{gathered}
\frac{\text { security proof }}{\text { dec-LWE } \Rightarrow} \\
\boldsymbol{\Lambda}_{\boldsymbol{q}}^{\perp}(\boldsymbol{P}) \underset{\text { (no information about sk) }}{\perp} \text { random } \boldsymbol{q} \text {-lattice } \\
\text { dec-LWE } \Rightarrow \\
\boldsymbol{t} \approx \text { uniform random target } \\
\boldsymbol{c} \approx \underset{\text { (no information about } m \text {) }}{\sim}
\end{gathered}
$$

KeyGen:
$\mathrm{pk}=(\boldsymbol{A}, \boldsymbol{b}=\boldsymbol{A} \boldsymbol{s}+\boldsymbol{e}), \boldsymbol{P}=\left(\begin{array}{cc}\boldsymbol{A} & \boldsymbol{b} \\ \mathbf{0} & 1\end{array}\right)$.
sk $=e$, short vector $\binom{e}{1} \in \Lambda_{q}(P)$.
Encrypt (m, pk) :
Generate: BDD instance $\boldsymbol{t}=\boldsymbol{v}+\boldsymbol{e}^{\prime}$ in $\boldsymbol{\Lambda}_{\boldsymbol{q}}^{\perp}(\boldsymbol{P})$
Output: $\boldsymbol{c}=\boldsymbol{t}+\left\lfloor\frac{\boldsymbol{q}}{2}\right\rceil \cdot \boldsymbol{m} \cdot(\mathbf{0}, \ldots, \mathbf{0}, \mathbf{1})^{\top}$.
Decrypt (c, sk) :
Compute: $\boldsymbol{x}=\left\langle\boldsymbol{c},\binom{\boldsymbol{e}}{1}\right\rangle \bmod \boldsymbol{q}$.
Output: $\boldsymbol{m}^{\prime}= \begin{cases}\mathbf{0} & , \text { if }-\frac{\boldsymbol{q}}{4} \leq x \leq \frac{q}{4} \\ \mathbf{1} & , \text { else }\end{cases}$

Summary on SIS and LWE

SIS and LWE are average-case problems

Summary on SIS and LWE

SIS and LWE are average-case problems \Rightarrow Good for crypto
(negligible probability to sample a weak key)

Summary on SIS and LWE

```
SIS and LWE are average-case problems
                G Good for crypto
(negligible probability to sample a weak key)
```

family of random q-ary lattices

```
SIS and LWE are average-case problems
    G Good for crypto
(negligible probability to sample a weak key)
```

family of random q-ary lattices
(I)SIS $\stackrel{\sim}{\longleftrightarrow}$ average-case SVP/CVP

LWE $\stackrel{\sim}{\longleftrightarrow}$ average case BDD/uSVP

LWE vs SIS

LWE vs SIS

LWE vs SIS

Exercise

Prove that decision-LWE \leq SIS

Hint: See decryption of LWE encryption scheme

Recap

(decision) LWE / SIS:

- lattice problems over random \boldsymbol{q}-ary lattices

Recap

(decision) LWE / SIS:

- lattice problems over random \boldsymbol{q}-ary lattices
- all somewhat equivalent (quantumly)

Recap

(decision) LWE / SIS:

- lattice problems over random \boldsymbol{q}-ary lattices
- all somewhat equivalent (quantumly)
- as hard as worst-case lattice problems

Recap

(decision) LWE / SIS:

- lattice problems over random \boldsymbol{q}-ary lattices
- all somewhat equivalent (quantumly)
- as hard as worst-case lattice problems
- no major flaw in the design
- but cryptographic constructions choose smaller parameters than the ones needed for the reductions

Recap

(decision) LWE / SIS:

- lattice problems over random \boldsymbol{q}-ary lattices
- all somewhat equivalent (quantumly)
- as hard as worst-case lattice problems
- no major flaw in the design
- but cryptographic constructions choose smaller parameters than the ones needed for the reductions
- best known algorithm has time $\mathbf{2}^{\boldsymbol{\Omega (m)}}$ (for well chosen parameters q and B)

Recap

(decision) LWE / SIS:

- lattice problems over random \boldsymbol{q}-ary lattices
- all somewhat equivalent (quantumly)
- as hard as worst-case lattice problems
- no major flaw in the design
- but cryptographic constructions choose smaller parameters than the ones needed for the reductions
- best known algorithm has time $\mathbf{2}^{\boldsymbol{\Omega (m)}}$ (for well chosen parameters q and B)
- by transforming LWE and (I)SIS into SVP/CVP instances

Recap

(decision) LWE / SIS:

- lattice problems over random \boldsymbol{q}-ary lattices
- all somewhat equivalent (quantumly)
- as hard as worst-case lattice problems
- no major flaw in the design
- but cryptographic constructions choose smaller parameters than the ones needed for the reductions
- best known algorithm has time $\mathbf{2}^{\boldsymbol{\Omega (m)}}$ (for well chosen parameters q and B)
- by transforming LWE and (I)SIS into SVP/CVP instances
- useful survey [Pei16]

Algebraic lattices

- A lattice of dimension \boldsymbol{n} is described by some basis $\boldsymbol{B} \in \mathbb{R}^{\boldsymbol{n} \times \boldsymbol{n}}$
- A lattice of dimension \boldsymbol{n} is described by some basis $\boldsymbol{B} \in \mathbb{R}^{\boldsymbol{n} \times \boldsymbol{n}}$ $\Rightarrow \boldsymbol{n}^{2}$ coefficients, $\quad\left(n=1000, n^{2}=10^{6}\right)$
- A lattice of dimension \boldsymbol{n} is described by some basis $\boldsymbol{B} \in \mathbb{R}^{\boldsymbol{n} \times \boldsymbol{n}}$ $\Rightarrow \boldsymbol{n}^{2}$ coefficients, $\quad\left(n=1000, n^{2}=10^{6}\right)$
- Storage: multiple MB or GB of data

Motivation

- A lattice of dimension \boldsymbol{n} is described by some basis $\boldsymbol{B} \in \mathbb{R}^{\boldsymbol{n} \times \boldsymbol{n}}$ $\Rightarrow \boldsymbol{n}^{2}$ coefficients, $\quad\left(n=1000, n^{2}=10^{6}\right)$
- Storage: multiple MB or GB of data
- Efficiency: matrix-matrix product $O\left(n^{3}\right)$, matrix-vector $O\left(n^{2}\right)$

Motivation

- A lattice of dimension \boldsymbol{n} is described by some basis $\boldsymbol{B} \in \mathbb{R}^{\boldsymbol{n} \times \boldsymbol{n}}$ $\Rightarrow \boldsymbol{n}^{2}$ coefficients, $\quad\left(n=1000, n^{2}=10^{6}\right)$
- Storage: multiple MB or GB of data
- Efficiency: matrix-matrix product $O\left(n^{3}\right)$, matrix-vector $O\left(n^{2}\right)$
(we ignore here the dependency on the size of each coefficient)

Motivation

- A lattice of dimension \boldsymbol{n} is described by some basis $\boldsymbol{B} \in \mathbb{R}^{\boldsymbol{n} \times \boldsymbol{n}}$ $\Rightarrow \boldsymbol{n}^{2}$ coefficients, $\quad\left(n=1000, n^{2}=10^{6}\right)$
- Storage: multiple MB or GB of data
- Efficiency: matrix-matrix product $O\left(n^{3}\right)$, matrix-vector $O\left(n^{2}\right)$ (we ignore here the dependency on the size of each coefficient)

Idea: add (algebraic) structure

Number fields
Number field: $K=\mathbb{Q}[\boldsymbol{X}] / \boldsymbol{P}(\boldsymbol{X}) \quad(\boldsymbol{P}$ irreducible, $\operatorname{deg}(P)=d)$

Number fields
Number field: $\quad \boldsymbol{K}=\mathbb{Q}[\boldsymbol{X}] / \boldsymbol{P}(\boldsymbol{X}) \quad(P$ irreducible, $\operatorname{deg}(P)=d)$

- $K=\mathbb{Q}$
- $K=\mathbb{Q}[X] /\left(X^{d}+1\right)$ with $d=2^{\ell} \rightsquigarrow$ power-of-two cyclotomic field
- $K=\mathbb{Q}[X] /\left(X^{d}-X-1\right)$ with d prime \rightsquigarrow NTRUPrime field

Number field: $\boldsymbol{K}=\mathbb{Q}[\boldsymbol{X}] / \boldsymbol{P}(\boldsymbol{X}) \quad(P$ irreducible, $\operatorname{deg}(P)=\boldsymbol{d})$

- $K=\mathbb{Q}$
- $K=\mathbb{Q}[X] /\left(X^{d}+1\right)$ with $d=2^{\ell} \rightsquigarrow$ power-of-two cyclotomic field
- $K=\mathbb{Q}[X] /\left(X^{d}-X-1\right)$ with d prime \rightsquigarrow NTRUPrime field

Ring of integers: $\mathcal{O}_{\boldsymbol{K}} \subset \boldsymbol{K}$, for this talk $\mathcal{O}_{\boldsymbol{K}}=\mathbb{Z}[\boldsymbol{X}] / \boldsymbol{P}(\boldsymbol{X})$ (more generally $\mathbb{Z}[X] / P(X) \subseteq \mathcal{O}_{K}$ but \mathcal{O}_{K} can be larger)

Number field: $\boldsymbol{K}=\mathbb{Q}[\boldsymbol{X}] / \boldsymbol{P}(\boldsymbol{X}) \quad(P$ irreducible, $\operatorname{deg}(P)=\boldsymbol{d})$

- $K=\mathbb{Q}$
- $K=\mathbb{Q}[X] /\left(X^{d}+1\right)$ with $d=2^{\ell} \rightsquigarrow$ power-of-two cyclotomic field
- $K=\mathbb{Q}[X] /\left(\boldsymbol{X}^{d}-\boldsymbol{X}-1\right)$ with \boldsymbol{d} prime \rightsquigarrow NTRUPrime field

Ring of integers: $\mathcal{O}_{\boldsymbol{K}} \subset \boldsymbol{K}$, for this talk $\mathcal{O}_{\boldsymbol{K}}=\mathbb{Z}[\boldsymbol{X}] / \boldsymbol{P}(\boldsymbol{X})$ (more generally $\mathbb{Z}[X] / P(X) \subseteq \mathcal{O}_{K}$ but \mathcal{O}_{K} can be larger)

- $\mathcal{O}_{K}=\mathbb{Z}$
- $\mathcal{O}_{K}=\mathbb{Z}[X] /\left(X^{d}+1\right)$ with $d=2^{\ell} \rightsquigarrow$ power-of-two cyclotomic ring
- $\mathcal{O}_{K}=\mathbb{Z}[X] /\left(X^{d}-X-1\right)$ with d prime \rightsquigarrow NTRUPrime ring of integers

Embeddings

$\left(K=\mathbb{Q}[X] / P(X), \quad \alpha_{1}, \cdots, \alpha_{d}\right.$ complex roots of $\left.P(X)\right)$
Coefficient embedding: $\quad \boldsymbol{\Sigma}: \begin{aligned} K & \rightarrow \mathbb{R}^{\boldsymbol{d}} \\ \sum_{\boldsymbol{i}=\mathbf{0}}^{\boldsymbol{d}=\mathbf{1}} \boldsymbol{y}_{\boldsymbol{i}} \boldsymbol{X}^{\boldsymbol{i}} & \mapsto\left(\boldsymbol{y}_{\mathbf{0}}, \cdots, \boldsymbol{y}_{\boldsymbol{d}-\mathbf{1}}\right)\end{aligned}$

Canonical embedding: $\boldsymbol{\sigma}$

$$
\begin{aligned}
K & \rightarrow \mathbb{C}^{d} \\
y(X) & \mapsto\left(y\left(\alpha_{1}\right), \cdots, y\left(\alpha_{d}\right)\right)
\end{aligned}
$$

Embeddings

$\left(K=\mathbb{Q}[X] / P(X), \quad \alpha_{1}, \cdots, \alpha_{d}\right.$ complex roots of $\left.P(X)\right)$
Coefficient embedding: $\boldsymbol{\Sigma}: \begin{aligned} K & \rightarrow \mathbb{R}^{\boldsymbol{d}} \\ & \sum_{i=0}^{d-1} y_{i} \boldsymbol{X}^{\boldsymbol{i}}\end{aligned}>\left(\boldsymbol{y}_{0}, \cdots, \boldsymbol{y}_{\boldsymbol{d}-1}\right)$.
Canonical embedding: $\boldsymbol{\sigma}$

$$
\begin{aligned}
K & \rightarrow \mathbb{C}^{d} \\
y(X) & \mapsto\left(y\left(\alpha_{1}\right), \cdots, y\left(\alpha_{d}\right)\right)
\end{aligned}
$$

- both embeddings induce a (different) geometry on \boldsymbol{K}

Embeddings

$\left(K=\mathbb{Q}[X] / P(X), \quad \alpha_{1}, \cdots, \alpha_{d}\right.$ complex roots of $\left.P(X)\right)$
Coefficient embedding: $\boldsymbol{\Sigma}$:

$$
\begin{aligned}
K & \rightarrow \mathbb{R}^{d} \\
\sum_{i=0}^{d-1} y_{i} X^{i} & \mapsto\left(y_{0}, \cdots, y_{d-1}\right)
\end{aligned}
$$

Canonical embedding: $\boldsymbol{\sigma}$:

$$
\begin{aligned}
K & \rightarrow \mathbb{C}^{d} \\
y(X) & \mapsto\left(y\left(\alpha_{1}\right), \cdots, y\left(\alpha_{d}\right)\right)
\end{aligned}
$$

- both embeddings induce a (different) geometry on \boldsymbol{K}

Which embedding should we choose?

- coefficient embedding is used for constructions (efficient implementation)
- canonical embedding is used in cryptanalysis / reductions (nice mathematical properties)

Embeddings

$\left(K=\mathbb{Q}[X] / P(X), \quad \alpha_{1}, \cdots, \alpha_{d}\right.$ complex roots of $\left.P(X)\right)$
Coefficient embedding: $\boldsymbol{\Sigma}$:

$$
\begin{aligned}
K & \rightarrow \mathbb{R}^{d} \\
\sum_{i=0}^{d-1} y_{i} X^{i} & \mapsto\left(y_{0}, \cdots, y_{d-1}\right)
\end{aligned}
$$

Canonical embedding: $\boldsymbol{\sigma}$:

$$
\begin{aligned}
K & \rightarrow \mathbb{C}^{d} \\
y(X) & \mapsto\left(y\left(\alpha_{1}\right), \cdots, y\left(\alpha_{d}\right)\right)
\end{aligned}
$$

- both embeddings induce a (different) geometry on \boldsymbol{K}

Which embedding should we choose?

- coefficient embedding is used for constructions (efficient implementation)
- canonical embedding is used in cryptanalysis / reductions (nice mathematical properties)
- for fields used in crypto, both geometries are \approx the same

Ideals

Ideal: $\boldsymbol{I} \subseteq \mathcal{O}_{K}$ is an ideal if $\quad \boldsymbol{x}+\boldsymbol{y} \in \boldsymbol{I}$ for all $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{I}$

- $\boldsymbol{a} \cdot \boldsymbol{x} \in \boldsymbol{I}$ for all $\boldsymbol{a} \in \mathcal{O}_{\boldsymbol{K}}$ and $\boldsymbol{x} \in \boldsymbol{I}$

Ideals

Ideal: $\boldsymbol{I} \subseteq \mathcal{O}_{K}$ is an ideal if $\quad \boldsymbol{x}+\boldsymbol{y} \in \boldsymbol{I}$ for all $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{I}$

- $\boldsymbol{a} \cdot \boldsymbol{x} \in \boldsymbol{I}$ for all $\boldsymbol{a} \in \mathcal{O}_{\boldsymbol{K}}$ and $\boldsymbol{x} \in \boldsymbol{I}$
- $I_{1}=\{2 a \mid a \in \mathbb{Z}\}$ and $J_{1}=\{6 a \mid a \in \mathbb{Z}\}$ in $\mathcal{O}_{K}=\mathbb{Z}$
- $I_{2}=\{a+b \cdot X \mid a+b=0 \bmod 2, a, b \in \mathbb{Z}\}$ in $\mathcal{O}_{K}=\mathbb{Z}[X] /\left(X^{2}+1\right)$

Ideals

Ideal: $\boldsymbol{I} \subseteq \mathcal{O}_{K}$ is an ideal if $\quad \boldsymbol{x}+\boldsymbol{y} \in \boldsymbol{I}$ for all $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{I}$

- $\boldsymbol{a} \cdot \boldsymbol{x} \in \boldsymbol{I}$ for all $\boldsymbol{a} \in \mathcal{O}_{\boldsymbol{K}}$ and $\boldsymbol{x} \in \boldsymbol{I}$
- $I_{1}=\{2 a \mid a \in \mathbb{Z}\}$ and $J_{1}=\{6 a \mid a \in \mathbb{Z}\}$ in $\mathcal{O}_{K}=\mathbb{Z}$
- $I_{2}=\{a+\boldsymbol{b} \cdot \boldsymbol{X} \mid \boldsymbol{a}+\boldsymbol{b}=0 \bmod 2, \boldsymbol{a}, \boldsymbol{b} \in \mathbb{Z}\}$ in $\mathcal{O}_{K}=\mathbb{Z}[X] /\left(X^{2}+1\right)$

Principal ideals: $\langle\boldsymbol{g}\rangle:=\left\{\boldsymbol{g} \cdot \boldsymbol{a} \mid \boldsymbol{a} \in \boldsymbol{O}_{K}\right\}$

Ideals

Ideal: $\boldsymbol{I} \subseteq \mathcal{O}_{K}$ is an ideal if $\quad \boldsymbol{x}+\boldsymbol{y} \in \boldsymbol{I}$ for all $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{I}$

- $\boldsymbol{a} \cdot \boldsymbol{x} \in \boldsymbol{I}$ for all $\boldsymbol{a} \in \mathcal{O}_{\boldsymbol{K}}$ and $\boldsymbol{x} \in \boldsymbol{I}$
- $I_{1}=\{2 a \mid a \in \mathbb{Z}\}$ and $J_{1}=\left\{\mathbf{6 a | a \in \mathbb { Z } \}}\right.$ in $\mathcal{O}_{K}=\mathbb{Z}$
- $I_{2}=\{a+\boldsymbol{b} \cdot \boldsymbol{X} \mid \boldsymbol{a}+\boldsymbol{b}=0 \bmod 2, \boldsymbol{a}, \boldsymbol{b} \in \mathbb{Z}\}$ in $\mathcal{O}_{K}=\mathbb{Z}[X] /\left(X^{2}+1\right)$

$$
\begin{aligned}
& \text { Principal ideals: } \quad\langle\boldsymbol{g}\rangle:=\left\{\boldsymbol{g} \cdot \boldsymbol{a} \mid \boldsymbol{a} \in \mathbf{O}_{\boldsymbol{K}}\right\} \\
& \quad I_{1}=\{2 a \mid a \in \mathbb{Z}\}=\langle 2\rangle \\
& \quad I_{2}=\{a+b \cdot X \mid a+b=0 \bmod 2, a, b \in \mathbb{Z}\}=\langle 1+X\rangle
\end{aligned}
$$

Ideal lattices

$\mathcal{O}_{\boldsymbol{K}}$ is a lattice via the coefficient embedding $\boldsymbol{\Sigma}$:

- $\mathcal{O}_{K}=1 \cdot \mathbb{Z}+X \cdot \mathbb{Z}+\cdots+X^{d-1} \cdot \mathbb{Z}$
- $\Sigma\left(\mathcal{O}_{K}\right)=\Sigma(1) \cdot \mathbb{Z}+\cdots+\Sigma\left(X^{d-1}\right) \cdot \mathbb{Z}$

Ideal lattices

$\mathcal{O}_{\boldsymbol{K}}$ is a lattice via the coefficient embedding $\boldsymbol{\Sigma}$:

- $\mathcal{O}_{K}=1 \cdot \mathbb{Z}+X \cdot \mathbb{Z}+\cdots+X^{d-1} \cdot \mathbb{Z}$
- $\Sigma\left(\mathcal{O}_{K}\right)=\Sigma(1) \cdot \mathbb{Z}+\cdots+\Sigma\left(X^{d-1}\right) \cdot \mathbb{Z}$
$\boldsymbol{\Sigma}\left(\mathcal{O}_{K}\right)$ is a lattice of rank \boldsymbol{d} in $\mathbb{Z}^{\boldsymbol{d}}$ with basis $\left(\boldsymbol{\Sigma}\left(\boldsymbol{X}^{\boldsymbol{i}}\right)\right)_{0 \leq i<\boldsymbol{d}}$

Ideal lattices

$\mathcal{O}_{\boldsymbol{K}}$ is a lattice via the coefficient embedding $\boldsymbol{\Sigma}$:

- $\mathcal{O}_{K}=1 \cdot \mathbb{Z}+X \cdot \mathbb{Z}+\cdots+X^{d-1} \cdot \mathbb{Z}$
- $\Sigma\left(\mathcal{O}_{K}\right)=\Sigma(1) \cdot \mathbb{Z}+\cdots+\Sigma\left(X^{d-1}\right) \cdot \mathbb{Z}$

$$
\boldsymbol{\Sigma}\left(\mathcal{O}_{K}\right) \text { is a lattice of rank } \boldsymbol{d} \text { in } \mathbb{Z}^{\boldsymbol{d}} \text { with basis }\left(\boldsymbol{\Sigma}\left(\boldsymbol{X}^{\boldsymbol{i}}\right)\right)_{0 \leq i<\boldsymbol{d}}
$$

$\langle\boldsymbol{g}\rangle$ is a lattice:

- $\langle g\rangle=g \cdot \mathcal{O}_{K}=g \cdot 1 \cdot \mathbb{Z}+g \cdot X \cdot \mathbb{Z}+\cdots+g \cdot X^{d-1} \cdot \mathbb{Z}$
- $\boldsymbol{\Sigma}(\langle g\rangle)=\Sigma(g) \cdot \mathbb{Z}+\cdots+\boldsymbol{\Sigma}\left(g \cdot X^{d-1}\right) \cdot \mathbb{Z}$

Ideal lattices

$\mathcal{O}_{\boldsymbol{K}}$ is a lattice via the coefficient embedding $\boldsymbol{\Sigma}$:

- $\mathcal{O}_{K}=1 \cdot \mathbb{Z}+X \cdot \mathbb{Z}+\cdots+X^{d-1} \cdot \mathbb{Z}$
- $\Sigma\left(\mathcal{O}_{K}\right)=\Sigma(1) \cdot \mathbb{Z}+\cdots+\Sigma\left(X^{d-1}\right) \cdot \mathbb{Z}$

$$
\boldsymbol{\Sigma}\left(\mathcal{O}_{K}\right) \text { is a lattice of rank } \boldsymbol{d} \text { in } \mathbb{Z}^{\boldsymbol{d}} \text { with basis }\left(\boldsymbol{\Sigma}\left(\boldsymbol{X}^{\boldsymbol{i}}\right)\right)_{\mathbf{0} \leq \boldsymbol{i}<\boldsymbol{d}}
$$

$\langle\boldsymbol{g}\rangle$ is a lattice:

- $\langle g\rangle=g \cdot \mathcal{O}_{K}=g \cdot 1 \cdot \mathbb{Z}+g \cdot X \cdot \mathbb{Z}+\cdots+g \cdot X^{d-1} \cdot \mathbb{Z}$
- $\boldsymbol{\Sigma}(\langle g\rangle)=\Sigma(g) \cdot \mathbb{Z}+\cdots+\Sigma\left(g \cdot X^{d-1}\right) \cdot \mathbb{Z}$
$\boldsymbol{\Sigma}(\langle\boldsymbol{g}\rangle)$ is a lattice of rank \boldsymbol{d} in $\mathbb{Z}^{\boldsymbol{d}}$ with basis $\left(\boldsymbol{\Sigma}\left(\boldsymbol{g} \cdot \boldsymbol{X}^{\boldsymbol{i}}\right)\right)_{0 \leq i<\boldsymbol{d}}$
(this is also true for non principal ideals)
(we can replace $\boldsymbol{\Sigma}$ by σ and \mathbb{Z}^{d} by \mathbb{C}^{d})

$$
\begin{aligned}
& \Sigma(\langle 1+X\rangle) \\
& \Sigma\left(O_{K}\right)
\end{aligned}
$$

$$
\text { Basis of }\langle\boldsymbol{g}\rangle: \quad \boldsymbol{g}, \boldsymbol{g} \cdot \boldsymbol{X}, \cdots, \boldsymbol{g} \cdot \boldsymbol{X}^{\boldsymbol{d}-\mathbf{1}}
$$

$$
\begin{aligned}
& \text { Basis of }\langle\boldsymbol{g}\rangle: \quad \boldsymbol{g}, \boldsymbol{g} \cdot \boldsymbol{X}, \cdots, \boldsymbol{g} \cdot \boldsymbol{X}^{\boldsymbol{d}-\mathbf{1}} \\
& \text { Example in } \boldsymbol{K}=\mathbb{Q}[\boldsymbol{X}] /\left(\boldsymbol{X}^{\boldsymbol{d}}+\mathbf{1}\right. \\
& \\
& \left(\begin{array}{c}
\boldsymbol{g}_{\mathbf{0}} \\
\boldsymbol{g}_{\mathbf{1}} \\
\vdots \\
\boldsymbol{g}_{\boldsymbol{d}-1}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { Basis of }\langle\boldsymbol{g}\rangle: \quad \boldsymbol{g}, \boldsymbol{g} \cdot \boldsymbol{X}, \cdots, \boldsymbol{g} \cdot \boldsymbol{X}^{\boldsymbol{d}-\mathbf{1}} \\
& \text { Example in } K=\mathbb{Q}[X] /\left(X^{\boldsymbol{d}}+\mathbf{1}\right. \\
& \left(\begin{array}{cc}
g_{0} & -g_{d-1} \\
g_{1} & g_{0} \\
\vdots & \vdots \\
g_{d-1} & g_{d-2}
\end{array}\right. \\
& g \cdot X=\sum_{i=0}^{d-1} g_{i} X^{i+1}=g_{d-1} X^{d}+\sum_{i=0}^{d-2} g_{i} X^{i+1} \\
& =-g_{d-1}+\sum_{i=0}^{d-2} g_{i} X^{i+1} \bmod X^{d}+1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Basis of }\langle\boldsymbol{g}\rangle: \quad \boldsymbol{g}, \boldsymbol{g} \cdot \boldsymbol{X}, \cdots, \boldsymbol{g} \cdot \boldsymbol{X}^{\boldsymbol{d}-\mathbf{1}} \\
& \text { Example in } K=\mathbb{Q}[X] /\left(X^{\boldsymbol{d}}+1\right. \\
& \left(\begin{array}{cccc}
g_{0} & -g_{d-1} & \cdots & -g_{1} \\
g_{1} & g_{0} & \cdots & -g_{2} \\
\vdots & \vdots & \cdots & \vdots \\
g_{d-1} & g_{d-2} & \cdots & g_{0}
\end{array}\right) \\
& g \cdot X=\sum_{i=0}^{d-1} g_{i} X^{i+1}=g_{d-1} X^{d}+\sum_{i=0}^{d-2} g_{i} X^{i+1} \\
& =-g_{d-1}+\sum_{i=0}^{d-2} g_{i} X^{i+1} \bmod X^{d}+1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Basis of }\langle\boldsymbol{g}\rangle: \quad \boldsymbol{g}, \boldsymbol{g} \cdot \boldsymbol{X}, \cdots, \boldsymbol{g} \cdot \boldsymbol{X}^{\boldsymbol{d}-\mathbf{1}} \\
& \text { Example in } K=\mathbb{Q}[X] /\left(X^{d}+1\right. \\
& \left(\begin{array}{cccc}
g_{0} & -g_{d-1} & \cdots & -g_{1} \\
g_{1} & g_{0} & \cdots & -g_{2} \\
\vdots & \vdots & \ddots & \vdots \\
g_{d-1} & g_{d-2} & \cdots & g_{0}
\end{array}\right) \\
& g \cdot X=\sum_{i=0}^{d-1} g_{i} X^{i+1}=g_{d-1} X^{d}+\sum_{i=0}^{d-2} g_{i} X^{i+1} \\
& =-g_{d-1}+\sum_{i=0}^{d-2} g_{i} X^{i+1} \bmod X^{d}+1 \\
& \text { Storage: } \boldsymbol{n}^{2} \text { coefficients } \rightarrow \boldsymbol{n} \\
& \text { Time: } \quad \boldsymbol{O}\left(\boldsymbol{n}^{\mathbf{2}}\right) \rightarrow \boldsymbol{O}(\boldsymbol{n} \log (n)) \\
& \text { (fast polynomial multiplication via FFT) }
\end{aligned}
$$

(Free) module:

$$
M=\left\{B \cdot x \mid x \in \mathcal{O}_{K}^{k}\right\} \text { for some matrix } B \in \mathcal{O}_{K}^{k \times k} \text { with } \operatorname{det}_{K}(B) \neq 0
$$

Module lattices

(Free) module:

$$
M=\left\{B \cdot x \mid x \in \mathcal{O}_{K}^{k}\right\} \text { for some matrix } B \in \mathcal{O}_{K}^{k \times k} \text { with } \operatorname{det}_{K}(B) \neq 0
$$

- \boldsymbol{k} is the module rank
- \boldsymbol{B} is a module basis of \boldsymbol{M}
(if the module is not free, it has a 'pseudo-basis'" instead)
$\boldsymbol{\Sigma}(\boldsymbol{M})$ is a lattice:
- of \mathbb{Z}-rank $\boldsymbol{n}:=\boldsymbol{d} \cdot \boldsymbol{k}$, included in $\mathbb{Z}^{\boldsymbol{n}}$

Module lattices

(Free) module:

$$
M=\left\{B \cdot x \mid x \in \mathcal{O}_{K}^{k}\right\} \text { for some matrix } B \in \mathcal{O}_{K}^{k \times k} \text { with } \operatorname{det}_{K}(B) \neq 0
$$

- \boldsymbol{k} is the module rank
- \boldsymbol{B} is a module basis of \boldsymbol{M}
(if the module is not free, it has a 'pseudo-basis'" instead)
$\boldsymbol{\Sigma}(\boldsymbol{M})$ is a lattice:
- of \mathbb{Z}-rank $\boldsymbol{n}:=\boldsymbol{d} \cdot \boldsymbol{k}$, included in $\mathbb{Z}^{\boldsymbol{n}}$
- with basis $\left(\boldsymbol{\Sigma}\left(\boldsymbol{b}_{\boldsymbol{i}} \boldsymbol{X}^{\boldsymbol{j}}\right)\right)_{\substack{\mathbf{1}<i \leq \boldsymbol{j} \\ \mathbf{0}<\boldsymbol{j}<\boldsymbol{d}}} \quad$ (\boldsymbol{b}_{i} columns of $\left.B\right)$

Modules vs ideals

| Ideal | $=$ Module of rank $\mathbf{1}$ |
| ---: | :--- |
| (principal ideal | $=\quad$ free module of rank 1) |

Modules vs ideals

```
    Ideal = Module of rank 1
(principal ideal = free module of rank 1)
```

In $K=\mathbb{Q}[X] /\left(X^{d}+1\right):$

$$
M_{a}=\left(\begin{array}{cccc}
a_{1} & -a_{d} & \cdots & -a_{2} \\
a_{2} & a_{1} & \cdots & -a_{3} \\
\vdots & \cdot & \cdot & \vdots \\
a_{d} & a_{d-1} & \cdots & a_{1}
\end{array}\right)
$$

basis of a
principal ideal lattice

basis of a free module lattice of rank k

Algorithmic problems

Algorithmic problems

Notations:

- id-X = problem X restricted to ideal lattices
- $\bmod -X_{\boldsymbol{k}}=$ problem X restricted to module lattices of rank \boldsymbol{k}

Hardness of module SVP

Asymptotics:

[^1]
Ring and Module-LWE

```
(search) mod-LWE 
Parameters: q and B
Problem: Sample
- A}\leftarrow\mathcal{U}((\mp@subsup{\mathcal{O}}{K}{}/\boldsymbol{q}\mp@subsup{\mathcal{O}}{K}{\prime}\mp@subsup{)}{}{m\timesk}
- secret s}\in(\mp@subsup{\mathcal{O}}{K}{}/\boldsymbol{q}\mp@subsup{\mathcal{O}}{K}{}\mp@subsup{)}{}{k
* error e }\in\mp@subsup{\mathcal{O}}{K}{m}\mathrm{ with coefficients in {-B,
Given }A\mathrm{ and b}=A\cdots+e\operatorname{mod}q, recover 
(size of s}\mathrm{ and }\boldsymbol{e}\mathrm{ can be defined using }\boldsymbol{\Sigma}\mathrm{ or }\sigma\mathrm{ )
```


Ring and Module-LWE

```
(search) mod-LWE \({ }_{k}\)
Parameters: \(\boldsymbol{q}\) and \(\boldsymbol{B}\)
Problem: Sample
- \(A \leftarrow \mathcal{U}\left(\left(\mathcal{O}_{K} / \boldsymbol{q} \mathcal{O}_{K}\right)^{m \times k}\right)\)
- secret \(s \in\left(\mathcal{O}_{K} / \boldsymbol{q} \mathcal{O}_{K}\right)^{k}\)
- error \(e \in \mathcal{O}_{K}^{m}\) with coefficients in \(\{-\boldsymbol{B}, \cdots, \boldsymbol{B}\}\)
Given \(A\) and \(b=A \cdot s+e \bmod \boldsymbol{q}\), recover \(s\)
(size of \(\boldsymbol{s}\) and \(\boldsymbol{e}\) can be defined using \(\boldsymbol{\Sigma}\) or \(\sigma\) )
```

```
RLWE = mod-LWE1
```

```
RLWE = mod-LWE1
```

quantumly!

```
mod-LWE vs mod-SIVP
```

$$
\begin{aligned}
& \bmod -\operatorname{uSVP}_{\boldsymbol{m}+\boldsymbol{1}} \geq \bmod -\mathrm{BDD}_{\boldsymbol{m}} \geq \bmod -L W E_{k} \geq \bmod _{\boldsymbol{k}} \geq \operatorname{SIVP}_{\boldsymbol{k}} \\
& \text { quantumly! }
\end{aligned}
$$

How large should \boldsymbol{m} be?

- as small as possible
- but so that the closest point to \boldsymbol{b} is $\boldsymbol{A s}$

How large should \boldsymbol{m} be?

- as small as possible
- but so that the closest point to \boldsymbol{b} is $\boldsymbol{A s}$
- $\boldsymbol{m}=\boldsymbol{k}$ is not sufficient

mod-LWE vs mod-SIVP

How large should \boldsymbol{m} be?

- as small as possible
- but so that the closest point to \boldsymbol{b} is $\boldsymbol{A s}$
- m $=\boldsymbol{k}$ is not sufficient
- $\boldsymbol{m}=\boldsymbol{k}+\mathbf{1}$ might be sufficient depending on \boldsymbol{B} and \boldsymbol{q}
- we need roughly $m=k \cdot \frac{\log (q)}{\log (q / B)}$
- for $k=1, m=2$ is possible if $B \lesssim \sqrt{q}$

(search) NTRU

Parameters: $\boldsymbol{q} \geq \boldsymbol{B}>\mathbf{1}$
Objective: Sample $\boldsymbol{f}, \boldsymbol{g} \in \mathcal{O}_{\boldsymbol{K}}$ with coefficients in $\{-\boldsymbol{B}, \cdots, \boldsymbol{B}\}$. Given $\boldsymbol{h}=\boldsymbol{f} \cdot \boldsymbol{g}^{-1} \bmod \boldsymbol{q}$, recover $(\boldsymbol{f}, \boldsymbol{g})$

NTRU [HPS98]

(search) NTRU

Parameters: $\quad \boldsymbol{q} \geq \boldsymbol{B}>\mathbf{1}$
Objective: Sample $\boldsymbol{f}, \boldsymbol{g} \in \mathcal{O}_{\boldsymbol{K}}$ with coefficients in $\{-\boldsymbol{B}, \cdots, \boldsymbol{B}\}$. Given $\boldsymbol{h}=\boldsymbol{f} \cdot \boldsymbol{g}^{-1} \bmod \boldsymbol{q}$, recover $(\boldsymbol{f}, \boldsymbol{g})$

dec-NTRU

Parameters: $\boldsymbol{q}, \boldsymbol{B}$
Objective: distinguish between \boldsymbol{h} as above and \boldsymbol{h} uniform in $\mathcal{O}_{K} /\left(q \mathcal{O}_{K}\right)$

NTRU as a lattice

Recall: $\quad \boldsymbol{h}=\boldsymbol{f} \cdot \boldsymbol{g}^{-\mathbf{1}} \bmod \boldsymbol{q}$

Definition (NTRU Lattice)

$$
\mathcal{L}^{h, q}:=\left\{(a, b) \in R^{2}: h \cdot b=a \bmod q\right\}
$$

NTRU as a lattice

Recall: $\quad \boldsymbol{h}=\boldsymbol{f} \cdot \boldsymbol{g}^{-\mathbf{1}} \bmod \boldsymbol{q}$

Definition (NTRU Lattice)

$$
\mathcal{L}^{h, q}:=\left\{(a, b) \in R^{2}: h \cdot b=a \bmod q\right\}
$$

- $\boldsymbol{d}=\operatorname{deg}(R)$, rank 2 module, dimension $n=2 \boldsymbol{d}, \operatorname{det}\left(\mathcal{L}^{h, q}\right)=\boldsymbol{q}^{\boldsymbol{d}}$.

NTRU as a lattice

Recall: $\quad \boldsymbol{h}=\boldsymbol{f} \cdot \boldsymbol{g}^{-\mathbf{1}} \bmod \boldsymbol{q}$

Definition (NTRU Lattice)

$$
\mathcal{L}^{h, q}:=\left\{(a, b) \in R^{2}: h \cdot b=a \bmod q\right\}
$$

- d $=\operatorname{deg}(R)$, rank 2 module, dimension $n=2 \boldsymbol{d}, \operatorname{det}\left(\mathcal{L}^{h, q}\right)=\boldsymbol{q}^{\boldsymbol{d}}$.
- $\operatorname{gh}\left(\mathcal{L}^{h, q}\right) \approx \sqrt{\boldsymbol{d} / \pi e} \cdot \sqrt{\boldsymbol{q}}$

NTRU as a lattice

Recall: $\quad \boldsymbol{h}=\boldsymbol{f} \cdot \boldsymbol{g}^{-\mathbf{1}} \bmod \boldsymbol{q}$
Definition (NTRU Lattice)

$$
\mathcal{L}^{h, q}:=\left\{(a, b) \in R^{2}: h \cdot b=a \bmod q\right\}
$$

- d $=\operatorname{deg}(R)$, rank 2 module, dimension $n=2 \boldsymbol{d}, \operatorname{det}\left(\mathcal{L}^{h, q}\right)=\boldsymbol{q}^{\boldsymbol{d}}$.
- $\operatorname{gh}\left(\mathcal{L}^{h, q}\right) \approx \sqrt{\boldsymbol{d} / \pi e} \cdot \sqrt{\boldsymbol{q}}$

Short vector (s)
The rotations ($\boldsymbol{x}^{\boldsymbol{i}} \cdot \boldsymbol{f}, \boldsymbol{x}^{\boldsymbol{i}} \cdot \boldsymbol{g}$) are unusually short vectors in $\mathcal{L}^{\boldsymbol{h}, \boldsymbol{q}}$.

NTRU as a lattice

Recall: $\quad \boldsymbol{h}=\boldsymbol{f} \cdot \boldsymbol{g}^{-\mathbf{1}} \bmod \boldsymbol{q}$
Definition (NTRU Lattice)

$$
\mathcal{L}^{h, q}:=\left\{(a, b) \in R^{2}: h \cdot b=a \bmod q\right\}
$$

- $\boldsymbol{d}=\operatorname{deg}(R)$, rank 2 module, dimension $n=2 \boldsymbol{d}, \operatorname{det}\left(\mathcal{L}^{h, q}\right)=\boldsymbol{q}^{\boldsymbol{d}}$.
- $\operatorname{gh}\left(\mathcal{L}^{h, q}\right) \approx \sqrt{d / \pi e} \cdot \sqrt{q}$

Short vector (s)
The rotations ($\boldsymbol{x}^{\boldsymbol{i}} \cdot \boldsymbol{f}, \boldsymbol{x}^{\boldsymbol{i}} \cdot \boldsymbol{g}$) are unusually short vectors in $\mathcal{L}^{h, \boldsymbol{q}}$.

$$
\text { bad basis }=\left(\begin{array}{cc}
\boldsymbol{q} & \boldsymbol{h} \\
\mathbf{0} & \mathbf{1}
\end{array}\right), \quad \text { good basis }=\left(\begin{array}{cc}
\boldsymbol{f} & \boldsymbol{F} \\
\boldsymbol{g} & \boldsymbol{G}
\end{array}\right)
$$

If $\|(f, g)\| \geq \operatorname{poly}(\log n) \cdot \operatorname{gh}\left(\mathcal{L}^{h, q}\right)$

$$
\text { If }\|(f, g)\| \leq \operatorname{gh}\left(\mathcal{L}^{h, q}\right)
$$

If $\|(f, g)\| \geq \operatorname{poly}(\log n) \cdot \operatorname{gh}\left(\mathcal{L}^{h, q}\right)$

- \boldsymbol{h} is statistically close to uniform mod \boldsymbol{q} [SS11,wW18]
- dec-NTRU is statistically hard

If $\|(f, g)\| \leq \operatorname{gh}\left(\mathcal{L}^{h, q}\right)$

If $\|(f, g)\| \geq \operatorname{poly}(\log n) \cdot \operatorname{gh}\left(\mathcal{L}^{h, q}\right)$

- \boldsymbol{h} is statistically close to uniform mod \boldsymbol{q} [SS11,WW18]
- dec-NTRU is statistically hard

$$
\text { If }\|(f, g)\| \leq \operatorname{gh}\left(\mathcal{L}^{h, q}\right)
$$

- h is not statistically close to uniform $\bmod \boldsymbol{q}$
- NTRU is a special case of mod-uSVP2

Two regimes of NTRU

If $\|(f, g)\| \geq \operatorname{poly}(\log n) \cdot \operatorname{gh}\left(\mathcal{L}^{h, q}\right)$

- \boldsymbol{h} is statistically close to uniform mod \boldsymbol{q} [SS11,WW18]
- dec-NTRU is statistically hard

If $\|(f, g)\| \leq \operatorname{gh}\left(\mathcal{L}^{h, q}\right)$

- \boldsymbol{h} is not statistically close to uniform mod \boldsymbol{q}
- NTRU is a special case of mod-uSVP2

> uSVP regime \Rightarrow short structured basis \Rightarrow efficient encryption/signature scheme (e.g. NTRUEncrypt, NTRUSign, FALCON)

NTRU public vs secret basis

public and secret bases generated from the NTRU problem

Recap

- Algebraic structure reduces sizes and improves efficiency

Recap

- Algebraic structure reduces sizes and improves efficiency
- Can still define average-case problems

Recap

- Algebraic structure reduces sizes and improves efficiency
- Can still define average-case problems
- Most worst-case to average-case reductions still apply

Recap

- Algebraic structure reduces sizes and improves efficiency
- Can still define average-case problems
- Most worst-case to average-case reductions still apply
- Ideal lattices $=$ rank 1 modules can be vulnerable

Recap

- Algebraic structure reduces sizes and improves efficiency
- Can still define average-case problems
- Most worst-case to average-case reductions still apply
- Ideal lattices $=$ rank 1 modules can be vulnerable
- NIST candidates (e.g. Kyber, Dilithium, Falcon) use rank ≥ 2 (seems safe so far, but arguably their weakest point)

Conclusion on lattice-based crypto

Advantages:

- many reductions (worst-case to average-case, search to decision, ...)
- some parameters might still be broken
- but gives confidence that there are no major flaws in the problems

Conclusion on lattice-based crypto

Advantages:

- many reductions (worst-case to average-case, search to decision, ...)
- some parameters might still be broken
- but gives confidence that there are no major flaws in the problems
- complexity of the best algorithms is quite well understood
- LWE estimator: https://github.com/malb/lattice-estimator

Conclusion on lattice-based crypto

Advantages:

- many reductions (worst-case to average-case, search to decision, ...)
- some parameters might still be broken
- but gives confidence that there are no major flaws in the problems
- complexity of the best algorithms is quite well understood - LWE estimator: https://github.com/malb/lattice-estimator
- quite efficient if using structured lattices

Conclusion on lattice-based crypto

Advantages:

- many reductions (worst-case to average-case, search to decision, ...)
- some parameters might still be broken
- but gives confidence that there are no major flaws in the problems
- complexity of the best algorithms is quite well understood - LWE estimator: https://github.com/malb/lattice-estimator
- quite efficient if using structured lattices
- can be used in many constructions

Conclusion on lattice-based crypto

Advantages:

- many reductions (worst-case to average-case, search to decision, ...)
- some parameters might still be broken
- but gives confidence that there are no major flaws in the problems
- complexity of the best algorithms is quite well understood
- LWE estimator: https://github.com/malb/lattice-estimator
- quite efficient if using structured lattices
- can be used in many constructions

Drawbacks:

- big keysizes and ciphertexts/signatures vs classical cryptography

Conclusion on lattice-based crypto

Advantages:

- many reductions (worst-case to average-case, search to decision, ...)
- some parameters might still be broken
- but gives confidence that there are no major flaws in the problems
- complexity of the best algorithms is quite well understood
- LWE estimator: https://github.com/malb/lattice-estimator
- quite efficient if using structured lattices
- can be used in many constructions

Drawbacks:

- big keysizes and ciphertexts/signatures vs classical cryptography
- structured lattice problems are still young
- more cryptanalysis is needed

Conclusion on lattice-based crypto

Advantages:

- many reductions (worst-case to average-case, search to decision, ...)
- some parameters might still be broken
- but gives confidence that there are no major flaws in the problems
- complexity of the best algorithms is quite well understood
- LWE estimator: https://github.com/malb/lattice-estimator
- quite efficient if using structured lattices
- can be used in many constructions

Drawbacks:

- big keysizes and ciphertexts/signatures vs classical cryptography
- structured lattice problems are still young
- more cryptanalysis is needed

Thank you

[^0]: [Pei09] Peikert. Public-key cryptosystems from the worst-case shortest vector problem. STOC.
 [BLPRS13] Brakerski, Langlois, Peikert, Regev, and Stehlé. Classical hardness of learning with errors. STOC

[^1]: [CDW17] Cramer, Ducas, Wesolowski. Short stickelberger class relations and application to ideal-SVP. Eurocrypt.
 [PHS19] Pellet-Mary, Hanrot, Stehlé. Approx-SVP in ideal lattices with pre-processing. Eurocrypt.
 [BR20] Bernard, Roux-Langlois. Twisted-PHS: using the product formula to solve approx-SVP in ideal lattices. AC.

