# Lattice cryptography and cryptanalysis

Wessel van Woerden (Université de Bordeaux, IMB, Inria).



## Plan

#### Part I

#### Lattice theory

- ▶ Lattices
- ▶ Hard problems

# $\underline{\texttt{Cryptography}}$

- ▶ Trapdoor bases
- ▶ Encryption, Signature

#### Cryptanalysis

- ▶ Lattice Sieving
- Basis Reduction

## Plan

#### Part I

#### Lattice theory

- ▶ Lattices
- ▶ Hard problems

# Cryptography

- ▶ Trapdoor bases
- ▶ Encryption, Signature

#### Cryptanalysis

- ▶ Lattice Sieving
- Basis Reduction



## Plan

#### Part I

#### Lattice theory

- ▶ Lattices
- ▶ Hard problems

## Cryptography

- ▶ Trapdoor bases
- ▶ Encryption, Signature

#### Cryptanalysis

- Lattice Sieving
- Basis Reduction



acknowledgements: many slides adapted from Alice Pellet-Mary!

/ 74

# Lattice theory

Similarities:

#### Similarities:

▶ Both are discrete additive groups

#### Similarities:

- ▶ Both are discrete additive groups
- ▶ Same problems: finding short or close lattice/code points

#### Similarities:

- ▶ Both are discrete additive groups
- ▶ Same problems: finding short or close lattice/code points

Differences:

#### Similarities:

- ▶ Both are discrete additive groups
- ▶ Same problems: finding short or close lattice/code points

#### Differences:

 $\blacktriangleright$  Hamming distance in  $\mathbb{F}_a^n \to$  Euclidean distance in  $\mathbb{R}^n$ 

#### Similarities:

- ▶ Both are discrete additive groups
- ▶ Same problems: finding short or close lattice/code points

#### Differences:

▶ Hamming distance in  $\mathbb{F}_a^n \to$  Euclidean distance in  $\mathbb{R}^n$  (pictures!)

#### Similarities:

- ▶ Both are discrete additive groups
- ▶ Same problems: finding short or close lattice/code points

#### Differences:

- ▶ Hamming distance in  $\mathbb{F}_{q}^{n}$  → Euclidean distance in  $\mathbb{R}^{n}$  (pictures!)
- $\blacktriangleright$  Code with decoding algorithm  $\rightarrow$  Any lattice and a short basis (decoding for free!)

#### Similarities:

- Both are discrete additive groups
- ▶ Same problems: finding short or close lattice/code points

#### Differences:

- ▶ Hamming distance in  $\mathbb{F}_q^n$  → Euclidean distance in  $\mathbb{R}^n$  (pictures!)
- $\blacktriangleright$  Code with decoding algorithm  $\rightarrow$  Any lattice and a short basis (decoding for free!)

most important:

row vectors  $(xG) \rightarrow \text{column vectors } (Gx)$ 

## Lattice

A <u>lattice</u>  $\mathcal{L} \subset \mathbb{R}^n$  is a discrete subgroup of  $\mathbb{R}^n$ .

#### <u>Discrete</u>

For every  $\mathbf{v} \in \mathcal{L}$  there exists an open ball around  $\mathbf{v}$  that contains no other elements from  $\mathcal{L}$ .



| A | dd | it | ;i | ve |
|---|----|----|----|----|
| _ |    | -  |    |    |





4 / 74

# Additive



4 / 74

First minimum of a lattice



First minimum of a lattice

# 

By the additivity the neighborhood of

every lattice point looks the same.

First minimum of a lattice



By the additivity the neighborhood of every lattice point looks the same.

First minimum of a lattice



The first minimum  $\lambda_1(\mathcal{L})$  of a lattice  $\mathcal{L}$  is the length of the shortest nonzero lattice vector:  $\lambda_1(\mathcal{L}) = \min_{x \in \mathcal{L} \setminus \{0\}} \{ \|x\| \} > 0.$ 



The volume  $\operatorname{vol}(\mathcal{L})$  of a lattice  $\mathcal{L}$  is the (co-)volume of any fundamental area w.r.t. translation of the lattice:  $\operatorname{vol}(\mathcal{L}) = \operatorname{vol}(\mathbb{R}^n/\mathcal{L}) \quad (\operatorname{density}(\mathcal{L}) = 1/\operatorname{vol}(\mathcal{L}))$ 



The volume  $\operatorname{vol}(\mathcal{L})$  of a lattice  $\mathcal{L}$  is the (co-)volume of any fundamental area w.r.t. translation of the lattice:  $\operatorname{vol}(\mathcal{L}) = \operatorname{vol}(\mathbb{R}^n/\mathcal{L})$  (density( $\mathcal{L}$ ) =  $1/\operatorname{vol}(\mathcal{L})$ )



The volume  $\operatorname{vol}(\mathcal{L})$  of a lattice  $\mathcal{L}$  is the (co-)volume of any fundamental area w.r.t. translation of the lattice:  $\operatorname{vol}(\mathcal{L}) = \operatorname{vol}(\mathbb{R}^n/\mathcal{L}) \quad (\operatorname{density}(\mathcal{L}) = 1/\operatorname{vol}(\mathcal{L}))$ 

6 / 74



The volume  $\operatorname{vol}(\mathcal{L})$  of a lattice  $\mathcal{L}$  is the (co-)volume of any fundamental area w.r.t. translation of the lattice:  $\operatorname{vol}(\mathcal{L}) = \operatorname{vol}(\operatorname{Span}_{\mathbb{R}}(\mathcal{L})/\mathcal{L}), \quad (\operatorname{density}(\mathcal{L}) = 1/\operatorname{vol}(\mathcal{L}))$ 

## Minkowski's Theorem



 $\frac{\texttt{Minkowski's Theorem}}{\texttt{For a full-rank lattice } \mathcal{L} \subset \mathbb{R}^n} \text{ we have }$ 

 $ext{vol}\left(rac{1}{2}\lambda_1(\mathcal{L})\cdot\mathcal{B}^n
ight)\leq ext{vol}(\mathcal{L})$ 

# Minkowski's Theorem



For a full-rank lattice 
$$\mathcal{L} \subset \mathbb{R}^n$$
 we have  
 $\lambda_1(\mathcal{L}) \leq \underbrace{2 \frac{\operatorname{\mathsf{vol}}(\mathcal{L})^{1/n}}{\operatorname{vol}(\mathcal{B}^n)^{1/n}}}_{\mathsf{Mk}(\mathcal{L})} \approx 2 \cdot \sqrt{n/2\pi e} \cdot \operatorname{\mathsf{vol}}(\mathcal{L})^{1/n}$ 

7 / 74

Lattice basis

 $\mathbb{R} ext{-linearly}$  independent  $\mathbf{b}_1,\ldots,\mathbf{b}_n$ 

$$\mathcal{L}(B) := \{\sum_i x_i b_i : x \in \mathbb{Z}^n\} \subset \mathbb{R}^n.$$





Lattice basis

 $\mathbb{R}\text{-linearly}$  independent  $b_1,\ldots,b_n$ 

$$\mathcal{L}(B) := \{\sum_i x_i b_i : x \in \mathbb{Z}^n\} \subset \mathbb{R}^n.$$

Fundamental Parallelepiped

 $\mathcal{P}(B) = B \cdot [0, 1)^n$  $\operatorname{vol}(\mathcal{L}) = \operatorname{vol}(\mathcal{P}(B)) = |\det(B)|$ 



Lattice basis

 $\mathbb{R}\text{-linearly independent } \mathbf{b}_1, \dots, \mathbf{b}_n$  $\mathcal{L}(B) := \{ \sum_i x_i \mathbf{b}_i : \mathbf{x} \in \mathbb{Z}^n \} \subset \mathbb{R}^n.$ 

 $\frac{\text{Fundamental Parallelepiped}}{\mathcal{P}(B) = B \cdot [0, 1)^{n}}$  $\mathsf{vol}(\mathcal{L}) = \mathsf{vol}(\mathcal{P}(B)) = |\det(B)|$ 

Infinitely many distinct bases  $B' = B \cdot U$  for  $U \in \mathcal{GL}_n(\mathbb{Z})$ .

8 / 74



Lattice basis

 $\mathbb{R}$ -linearly independent  $\mathbf{b}_1, \ldots, \mathbf{b}_n$ 

 $\mathcal{L}(B) := \{\sum_i x_i b_i : x \in \mathbb{Z}^n\} \subset \mathbb{R}^n.$ 

Fundamental Parallelepiped

 $\mathcal{P}(B) = B \cdot [0, 1)^n$  $\operatorname{vol}(\mathcal{L}) = \operatorname{vol}(\mathcal{P}(B)) = |\det(B)|$ 

Infinitely many distinct bases  $B' = B \cdot U$  for  $U \in \mathcal{GL}_n(\mathbb{Z})$ .

## Hard Problems



 $\begin{array}{l} \begin{array}{l} \text{Shortest Vector Problem (SVP)} \\ \hline \text{Find a shortest <u>nonzero</u> vector} \\ \textbf{\textit{v}} \in \mathcal{L} \text{ of length } \lambda_1(\mathcal{L}). \end{array}$ 

Hard Problems



Shortest Vector Problem (SVP) Find a shortest <u>nonzero</u> vector  $v \in \mathcal{L}$  of length  $\lambda_1(\mathcal{L})$ .  $\frac{\text{Closest Vector Problem (CVP)}}{\text{Given a target } \mathbf{t} \in \mathbb{R}^n, \text{ find}}$ a closest vector  $\mathbf{v} \in \mathcal{L}$  to  $\mathbf{t}$ .

Hard Problems



 $\begin{array}{l} \underline{ \text{Shortest Vector Problem (SVP)} } \\ \overline{ \text{Find a shortest <u>nonzero</u> vector } \\ \boldsymbol{v} \in \mathcal{L} \text{ of length } \lambda_1(\mathcal{L}). \end{array}$ 

 $\frac{\text{Closest Vector Problem (CVP)}}{\text{Given a target } \mathbf{t} \in \mathbb{R}^n, \text{ find}}$ a closest vector  $\mathbf{v} \in \mathcal{L}$  to  $\mathbf{t}$ .

Supposedly hard to solve when *n* is large

(even with a quantum computer)

# How hard is SVP/CVP?

In theory: best algorithm has asymptotic complexity  $2^{c \cdot n + o(n)}$  classical:  $c \approx 0.292$ , or quantum:  $c \approx 0.265$ )

 $\Rightarrow$  not polynomial

# How hard is SVP/CVP?

In theory: best algorithm has asymptotic complexity  $2^{c \cdot n + o(n)}$  classical:  $c \approx 0.292$ , or quantum:  $c \approx 0.265$ )

 $\Rightarrow$  not polynomial

In practice:

▶ n=2  $\rightsquigarrow$  easy, very efficient in practice
# How hard is SVP/CVP?

In theory: best algorithm has asymptotic complexity  $2^{c \cdot n + o(n)}$  classical:  $c \approx 0.292$ , or quantum:  $c \approx 0.265$ )

 $\Rightarrow$  not polynomial

In practice:

- ▶  $n=2 \rightsquigarrow$  easy, very efficient in practice
- up to n=60 or n=80  $\rightsquigarrow$  a few minutes on a personal laptop

# How hard is SVP/CVP?

In theory: best algorithm has asymptotic complexity  $2^{c \cdot n + o(n)}$  classical:  $c \approx 0.292$ , or quantum:  $c \approx 0.265$ )

 $\Rightarrow$  not polynomial

In practice:

- ▶ n=2  $\rightsquigarrow$  easy, very efficient in practice
- ▶ up to n = 60 or  $n = 80 \rightsquigarrow$  a few minutes on a personal laptop
- $\blacktriangleright$  up to n=180  $\rightsquigarrow$  few weeks on a big computer with good code

# How hard is SVP/CVP?

In theory: best algorithm has asymptotic complexity  $2^{c \cdot n + o(n)}$  classical:  $c \approx 0.292$ , or quantum:  $c \approx 0.265$ )

 $\Rightarrow$  not polynomial

In practice:

- ▶ n=2  $\rightsquigarrow$  easy, very efficient in practice
- up to n=60 or n=80  $\rightsquigarrow$  a few minutes on a personal laptop
- up to n=180  $\rightsquigarrow$  few weeks on a big computer with good code
- ▶ from n = 400 to n = 1000  $\rightsquigarrow$  cryptography

#### Approximate versions



Find a short <u>nonzero</u> vector  $\mathbf{v} \in \mathcal{L}$  of length  $\leq \alpha \cdot \lambda_1(\mathcal{L})$ .

 $\overbrace{\text{Given a target } \mathbf{t} \in \mathbb{R}^n, \text{ find}}_{\text{a close vector } \mathbf{v} \in \mathcal{L} \text{ to } \mathbf{t}.}$ 

#### Approximate versions



 $\begin{array}{ll} & \underline{\alpha}\text{-approx-SVP} \\ \text{Find a short <u>nonzero</u> vector Gi} \\ \textbf{v} \in \mathcal{L} \text{ of length } \leq \alpha \cdot \lambda_1(\mathcal{L}). \end{array}$ 

Given a target  $\mathbf{t} \in \mathbb{R}^n$ , find a close vector  $\mathbf{v} \in \mathcal{L}$  to  $\mathbf{t}$ .

Supposedly hard to solve when n is large and the approximation factor  $\alpha$  is small (poly(n))

### Promise versions



 $\frac{\underline{\delta}-uSVP}{\text{Find unusually short}}$  Find unusually short vector  $\mathbf{v} \in \mathcal{L}$ .

 $\frac{\text{Bounded Distance Decoding ($\delta$-BDD$)}}{\text{CVP with a target unusually}}$ close to the lattice.

### Promise versions



 $\frac{\delta - uSVP}{Find unusually short}$  vector  $\mathbf{v} \in \mathcal{L}$ .

 $\frac{\text{Bounded Distance Decoding ($\delta$-BDD$)}}{\text{CVP with a target unusually}}$ close to the lattice.

Supposedly hard to solve when n is large and the promise gap  $1/\delta$  is small  $(\operatorname{poly}(n))$ 

Asymptotic hardness of approx-SVP/CVP

Best Time/Approximation trade-off for SVP, CVP (even quantumly): BKZ algorithm



13 / 74

Asymptotic hardness of approx-SVP/CVP

Best Time/Approximation trade-off for SVP, CVP (even quantumly): BKZ algorithm



13 / 74

# Asymptotic hardness of approx-SVP/CVP



#### We have seen:

 $\blacktriangleright$  Lattices are discrete subgroups of  $\mathbb{R}^n$ 

#### We have seen:

- ▶ Lattices are discrete subgroups of  $\mathbb{R}^n$
- ▶ Lattices can be efficiently represented by a basis

#### We have seen:

- ▶ Lattices are discrete subgroups of  $\mathbb{R}^n$
- ▶ Lattices can be efficiently represented by a basis

For large dimension  $\boldsymbol{n}$  and small approximation factors the following problems are supposedly hard:

▶ SVP, approxSVP, uSVP

#### We have seen:

- ▶ Lattices are discrete subgroups of  $\mathbb{R}^n$
- ▶ Lattices can be efficiently represented by a basis

For large dimension n and small approximation factors the following problems are supposedly hard:

- ▶ SVP, approxSVP, uSVP
- ▶ CVP, approxCVP, BDD

#### We have seen:

- ▶ Lattices are discrete subgroups of  $\mathbb{R}^n$
- ▶ Lattices can be efficiently represented by a basis

For large dimension  $\boldsymbol{n}$  and small approximation factors the following problems are supposedly hard:

- ▶ SVP, approxSVP, uSVP
- ▶ CVP, approxCVP, BDD

Many more variants possible: search vs decisional, one vs more solutions, ...)

#### We have seen:

- ▶ Lattices are discrete subgroups of  $\mathbb{R}^n$
- ▶ Lattices can be efficiently represented by a basis

For large dimension  $\boldsymbol{n}$  and small approximation factors the following problems are supposedly hard:

- ▶ SVP, approxSVP, uSVP
- ▶ CVP, approxCVP, BDD

Many more variants possible: search vs decisional, one vs more solutions, ...)

How to build cryptography from this?

# Lattice-based cryptography

## Good vs bad basis







### Good vs bad basis



15 / 74





Input:  $t = -1.4 \cdot b_1 + 2.2 \cdot b_2$   $\downarrow$  round coordinates Output:  $v = -1 \cdot b_1 + 2 \cdot b_2$ 



Input:  $t = -1.4 \cdot b_1 + 2.2 \cdot b_2$   $\downarrow$  round coordinates Output:  $v = -1 \cdot b_1 + 2 \cdot b_2$ 

$$e = t - v = -.4 \cdot b_1 + 0.2 \cdot b_2$$
$$e \in B \cdot \left[-\frac{1}{2}, \frac{1}{2}\right]^n$$



Input:  $t = -1.4 \cdot b_1 + 2.2 \cdot b_2$   $\downarrow$  round coordinates Output:  $v = -1 \cdot b_1 + 2 \cdot b_2$ 

$$e = t - v = -.4 \cdot b_1 + 0.2 \cdot b_2$$
  
 $e \in B \cdot \left[-\frac{1}{2}, \frac{1}{2}\right]^n$ 

BDD: inner-radius approxCVP: outer-radius



Input:  $t = -1.4 \cdot b_1 + 2.2 \cdot b_2$   $\downarrow$  round coordinates Output:  $v = -1 \cdot b_1 + 2 \cdot b_2$ 

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

The better the basis, the closer the solution

BDD: inner-radius approxCVP: outer-radius



KeyGen:

- sk = good basis of  $\mathcal{L}$ .
- $\mathsf{pk} = \mathbf{bad}$  basis of  $\mathcal{L}$ .





## KeyGen:

- sk = good basis of  $\mathcal{L}$ .
- $\mathbf{pk} = \mathbf{bad}$  basis of  $\mathcal{L}$ .

# Encrypt(m, pk) :

 $\begin{array}{c} \bullet & \bullet & b_{2}^{\prime} \bullet \\ \bullet & c \bullet \\ m & \bullet & b_{1}^{\prime} \\ \bullet & 0 \\ \end{array}$ 

Input: encode message  $m \in \mathcal{L}$  using pk.

Output: noisy message c = m + e.





## KeyGen:

- sk = good basis of  $\mathcal{L}$ .
- $\mathbf{pk} = \mathbf{bad}$  basis of  $\mathcal{L}$ .

# Encrypt(m, pk) :

Input: encode message  $m \in \mathcal{L}$  using pk. Output: noisy message c = m + e. Decrypt(c, sk): Input: c = m + e. Output: recover m using sk.



## KeyGen:

- sk = good basis of  $\mathcal{L}$ .
- $\mathsf{pk} = \mathbf{bad}$  basis of  $\mathcal{L}$ .

# Encrypt(m, pk) :



Input: encode message  $m \in \mathcal{L}$  using pk. Output: noisy message c = m + e. Decrypt(c, sk): Input: c = m + e. Output: recover m using sk.

Assumption: Hard to solve BDD in  ${\mathcal L}$  with bad basis.



KeyGen:

sk = good basis of  $\mathcal{L}$ .

$$\mathsf{pk} = \mathbf{bad}$$
 basis of  $\mathcal{L}$ .





KeyGen:

- sk = good basis of  $\mathcal{L}$ .
- $\mathsf{pk} = \mathit{bad}$  basis of  $\mathcal{L}$ .

**Sign**(*m*, *sk*) :

Hash m to a target  $t = H(m) \in \mathbb{R}^n$ .





KeyGen:

- sk = good basis of  $\mathcal{L}$ .
- pk = bad basis of  $\mathcal{L}$ .

**Sign**(*m*, *sk*) :

Hash m to a target  $t = H(m) \in \mathbb{R}^n$ .



Output:  $s \in \mathcal{L}$  close to t using sk.





KeyGen:

- $\mathsf{sk} = \mathsf{good}$  basis of  $\mathcal{L}$ .
- pk = bad basis of  $\mathcal{L}$ .

Sign(m, sk) :

Hash m to a target  $t = H(m) \in \mathbb{R}^n$ . Output:  $s \in \mathcal{L}$  close to t using sk.

Verify(s, pk): Check that  $s \in \mathcal{L}$  using pk. Check that s is close to H(m).



## KeyGen:

- $\mathbf{sk} = \mathbf{good}$  basis of  $\mathcal{L}$ .
- pk = bad basis of  $\mathcal{L}$ .

Sign(m, sk) :



Hash m to a target  $t = H(m) \in \mathbb{R}^n$ . Output:  $s \in \mathcal{L}$  close to t using sk. Verify(s, pk):

Check that  $s \in \mathcal{L}$  using pk.

Check that s is close to H(m).

Assumption: Hard to solve approxCVP in  $\mathcal L$  with bad basis.

## Learning attack on the signature scheme



Parallelepiped attack:

- ▶ ask for a signature s on m
- ▶ plot H(m) s

<sup>[</sup>NR06] Nguyen and Regev. Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures. J. Cryptology

## Learning attack on the signature scheme



Parallelepiped attack:

- ▶ ask for a signature s on m
- ▶ plot H(m) s
- ▶ repeat

<sup>[</sup>NR06] Nguyen and Regev. Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures. J. Cryptology
## Learning attack on the signature scheme



Parallelepiped attack:

- ▶ ask for a signature s on m
- ▶ plot H(m) s
- repeat

From the shape of the parallelepiped, one can recover the short basis



Idea: solve approxCVP randomly



Sign(m, sk): Hash m to a target  $t = H(m) \in \mathbb{R}^n$ . Output: (discrete Gaussian) sample  $s \in \mathcal{L}$  close to t using sk.

Idea: solve approxCVP randomly

Idea:



Sign(m, sk): Hash m to a target  $t = H(m) \in \mathbb{R}^n$ . Output: (discrete Gaussian) sample  $s \in \mathcal{L}$  close to t using sk.

solve approxCVP randomly

Idea:



Sign(m, sk): Hash m to a target  $t = H(m) \in \mathbb{R}^n$ . Output: (discrete Gaussian) sample  $s \in \mathcal{L}$  close to t using sk.

solve approxCVP randomly

Idea:



Sign(m, sk): Hash m to a target  $t = H(m) \in \mathbb{R}^n$ . Output: (discrete Gaussian) sample  $s \in \mathcal{L}$  close to t using sk.

solve approxCVP randomly

Signature does not depend

on secret basis  $\Rightarrow$  no leakage!

Idea:



Sign(m, sk): Hash m to a target  $t = H(m) \in \mathbb{R}^n$ . Output: (discrete Gaussian) sample  $s \in \mathcal{L}$  close to t using sk.

solve approxCVP randomly

Signature does not depend

on secret basis  $\Rightarrow$  no leakage!

FALCON = the above + NTRU lattices.

We have seen:

▶ BDD is hard (in a family of random lattices)  $\Rightarrow$  encryption scheme.

#### We have seen:

- ▶ BDD is hard (in a family of random lattices)  $\Rightarrow$  encryption scheme.
- ▶ approxCVP is hard (...) ⇒ signature scheme.

We have seen:

- ▶ BDD is hard (in a family of random lattices)  $\Rightarrow$  encryption scheme.
- ▶ approxCVP is hard (...) ⇒ signature scheme.

More on these families of lattices in part II!

#### We have seen:

- ▶ BDD is hard (in a family of random lattices)  $\Rightarrow$  encryption scheme.
- ▶ approxCVP is hard (...) ⇒ signature scheme.

More on these families of lattices in part II!

One can construct many advanced primitives from lattices:

- ▶ (fully) homomorphic encryption
- identity based encryption
- ▶ functional encryption for linear functions

...

#### We have seen:

- ▶ BDD is hard (in a family of random lattices) ⇒ encryption scheme.
- approxCVP is hard (...)  $\Rightarrow$  signature scheme.

How hard?

More on these families of lattices in part II!

One can construct many advanced primitives from lattices:

- ▶ (fully) homomorphic encryption
- identity based encryption
- functional encryption for linear functions

...

# Cryptanalysis - Algorithms to solve (approx)SVP

Best Time/Approximation trade-off for SVP, CVP (even quantumly):



# Heuristically solving SVP with lattice sieving

Heuristic assumptions allow to..

### Heuristic assumptions allow to..

▶ bridge the gap between provable and practical algorithms

### Heuristic assumptions allow to..

- ▶ bridge the gap between provable and practical algorithms
- ▶ reason about the practical behavior of algorithms

#### Heuristic assumptions allow to..

- ▶ bridge the gap between provable and practical algorithms
- ▶ reason about the practical behavior of algorithms
- ▶ derive asymptotic and concrete hardness estimates

#### Heuristic assumptions allow to..

- ▶ bridge the gap between provable and practical algorithms
- ▶ reason about the practical behavior of algorithms
- ▶ derive asymptotic and concrete hardness estimates

Provable: worst-case analysis Heuristic: simplified average-case analysis

#### Heuristic assumptions allow to..

- ▶ bridge the gap between provable and practical algorithms
- ▶ reason about the practical behavior of algorithms
- ▶ derive asymptotic and concrete hardness estimates

| Provable:  | worst-case | analysis     |          |
|------------|------------|--------------|----------|
| Heuristic: | simplified | average-case | analysis |

Why is this ok for lattice problems?

#### Heuristic assumptions allow to..

- ▶ bridge the gap between provable and practical algorithms
- ▶ reason about the practical behavior of algorithms
- ▶ derive asymptotic and concrete hardness estimates

| Provable:  | worst-case | analysis     |          |
|------------|------------|--------------|----------|
| Heuristic: | simplified | average-case | analysis |

Why is this ok for lattice problems?

▶ average-case is often the worst case (see part II!)

### Heuristic assumptions allow to..

- ▶ bridge the gap between provable and practical algorithms
- ▶ reason about the practical behavior of algorithms
- ▶ derive asymptotic and concrete hardness estimates

| Provable:  | worst-case | analysis     |          |
|------------|------------|--------------|----------|
| Heuristic: | simplified | average-case | analysis |

### Why is this ok for lattice problems?

- ▶ average-case is often the worst case (see part II!)
- ▶ matches with practical experiments



For a 'nice' volume  $S \subset \mathbb{R}^n$ :  $|S \cap \mathcal{L}| \approx \frac{\operatorname{vol}(S)}{\operatorname{vol}(\mathcal{L})} = \operatorname{vol}(S) \cdot \operatorname{density}(\mathcal{L})$ 



For a 'nice' volume  $S \subset \mathbb{R}^n$ :  $|S \cap \mathcal{L}| \approx \frac{\operatorname{vol}(S)}{\operatorname{vol}(\mathcal{L})} = \operatorname{vol}(S) \cdot \operatorname{density}(\mathcal{L})$ 

lattice points are uniformly

distributed with a certain density.



For a 'nice' volume  $S \subset \mathbb{R}^n$ :  $|S \cap \mathcal{L}| \approx \frac{\operatorname{vol}(S)}{\operatorname{vol}(\mathcal{L})} = \operatorname{vol}(S) \cdot \operatorname{density}(\mathcal{L})$ 

lattice points are uniformly distributed with a certain density.

In theory: true in expectation over all translations of  $\boldsymbol{S}$  or for a random lattice  $\boldsymbol{\mathcal{L}}$ .



For a 'nice' volume  $S \subset \mathbb{R}^n$ :  $|S \cap \mathcal{L}| \approx \frac{\operatorname{vol}(S)}{\operatorname{vol}(\mathcal{L})} = \operatorname{vol}(S) \cdot \operatorname{density}(\mathcal{L})$ 

lattice points are uniformly

distributed with a certain density.

In theory: true in expectation over all translations of  $\boldsymbol{S}$  or for a random lattice  $\mathcal{L}$ .

In practice: true for random lattices. (for a very weak heuristic notion of randomness)

High dimensional volumes can behave unintuitively

High dimensional volumes can behave unintuitively

$$\operatorname{vol}([-1,1]^n) = 2^n, \quad \operatorname{vol}(\mathcal{B}^n) = \frac{\pi^{n/2}}{\Gamma(\frac{n}{2}+1)} = \left(\frac{2\pi e}{n}\right)^{n/2 + o(n)} \to 0$$

High dimensional volumes can behave unintuitively

$$\operatorname{vol}([-1,1]^n) = 2^n, \quad \operatorname{vol}(\mathcal{B}^n) = \frac{\pi^{n/2}}{\Gamma(\frac{n}{2}+1)} = \left(\frac{2\pi e}{n}\right)^{n/2 + o(n)} \to 0$$

| n = 2<br>78.5% | n = 4 31% | $n = 10 \\ 0.25\%$ |
|----------------|-----------|--------------------|
|                |           |                    |
|                |           |                    |

High dimensional volumes can behave unintuitively

$$\operatorname{vol}([-1,1]^n) = 2^n, \quad \operatorname{vol}(\mathcal{B}^n) = \frac{\pi^{n/2}}{\Gamma(\frac{n}{2}+1)} = \left(\frac{2\pi e}{n}\right)^{n/2 + o(n)} \to 0$$



n-dimensional balls with a fixed radius 'disappear' for large n.

Scaling by R changes volume by factor  $R^n$ .

Scaling by R changes volume by factor  $R^n$ .

Example: suppose we have a ball  $\gamma\cdot\mathcal{B}^{500}$  with the same volume as a 500-dimensional lattice  $\mathcal{L}\subset\mathbb{R}^{500}$ .
Scaling by R changes volume by factor  $R^n$ .

Example: suppose we have a ball  $\gamma\cdot\mathcal{B}^{500}$  with the same volume as a 500-dimensional lattice  $\mathcal{L}\subset\mathbb{R}^{500}$ .

$$ig|ig(\gamma\cdot\mathcal{B}^{500}\setminus\{0\}ig)\cap\mathcal{L}ig|pprox 1 \ ig|ig(1.05\cdot\gamma\cdot\mathcal{B}^{500}\setminus\{0\}ig)\cap\mathcal{L}ig|pprox 1.05^{500}=3.9\cdot10^{10} \ ig|ig(0.95\cdot\gamma\cdot\mathcal{B}^{500}\setminus\{0\}ig)\cap\mathcal{L}ig|=7.3\cdot10^{-12}pprox 0$$

Scaling by R changes volume by factor  $R^n$ .

Example: suppose we have a ball  $\gamma\cdot\mathcal{B}^{500}$  with the same volume as a 500-dimensional lattice  $\mathcal{L}\subset\mathbb{R}^{500}$ .

$$ig|ig(\gamma\cdot\mathcal{B}^{500}\setminus\{0\}ig)\cap\mathcal{L}ig|pprox 1 \ ig|ig(1.05\cdot\gamma\cdot\mathcal{B}^{500}\setminus\{0\}ig)\cap\mathcal{L}ig|pprox 1.05^{500}=3.9\cdot10^{10} \ ig|ig(0.95\cdot\gamma\cdot\mathcal{B}^{500}\setminus\{0\}ig)\cap\mathcal{L}ig|=7.3\cdot10^{-12}pprox 0$$

$$\lambda_1(\mathcal{L}) \approx \gamma$$
.

Scaling by R changes volume by factor  $R^n$ .

Example: suppose we have a ball  $\gamma\cdot\mathcal{B}^{500}$  with the same volume as a 500-dimensional lattice  $\mathcal{L}\subset\mathbb{R}^{500}$ .

$$ig|ig(\gamma\cdot\mathcal{B}^{500}\setminus\{0\}ig)\cap\mathcal{L}ig|pprox 1 \ ig|ig(1.05\cdot\gamma\cdot\mathcal{B}^{500}\setminus\{0\}ig)\cap\mathcal{L}ig|pprox 1.05^{500}=3.9\cdot10^{10} \ ig|ig(0.95\cdot\gamma\cdot\mathcal{B}^{500}\setminus\{0\}ig)\cap\mathcal{L}ig|=7.3\cdot10^{-12}pprox 0$$

$$\left[ \lambda_1(\mathcal{L}) pprox \gamma \, . \ 
ight] \qquad \left[ \lambda_1 pprox \mathfrak{g} 
ight]$$

$$\lambda_1 pprox \mathsf{gh}(\mathcal{L}) := rac{\mathsf{vol}(\mathcal{L})^{1/n}}{\mathsf{vol}(\mathcal{B}^n)^{1/n}} \sim \sqrt{n/2\pi e} \cdot \mathsf{vol}(\mathcal{L})^{1/n}.$$

Scaling by R changes volume by factor  $R^n$ .

Example: suppose we have a ball  $\gamma\cdot\mathcal{B}^{500}$  with the same volume as a 500-dimensional lattice  $\mathcal{L}\subset\mathbb{R}^{500}$ .

$$ig|ig(\gamma\cdot\mathcal{B}^{500}\setminus\{0\}ig)\cap\mathcal{L}ig|pprox 1 \ ig|ig(1.05\cdot\gamma\cdot\mathcal{B}^{500}\setminus\{0\}ig)\cap\mathcal{L}ig|pprox 1.05^{500}=3.9\cdot10^{10} \ ig|ig(0.95\cdot\gamma\cdot\mathcal{B}^{500}\setminus\{0\}ig)\cap\mathcal{L}ig|=7.3\cdot10^{-12}pprox 0$$



$$\lambda_1(\mathcal{L}) pprox \gamma$$
.

$$\lambda_1 pprox \mathsf{gh}(\mathcal{L}) := rac{\mathsf{vol}(\mathcal{L})^{1/n}}{\mathsf{vol}(\mathcal{B}^n)^{1/n}} \sim \sqrt{n/2\pi e} \cdot \mathsf{vol}(\mathcal{L})^{1/n}.$$

# SVP via Lattice Sieving

#### 1. Sample a list $\boldsymbol{L} \subset \boldsymbol{\mathcal{L}}$ of (long) lattice vectors.

# SVP via Lattice Sieving

- 1. Sample a list  $\boldsymbol{L} \subset \boldsymbol{\mathcal{L}}$  of (long) lattice vectors.
- 2. Repeat:



Start with a list  $\boldsymbol{L}$  of  $\boldsymbol{N}$  vectors of length  $\leq \gamma$ .



Start with a list L of N vectors of length  $\leq \gamma$ .

Heuristic assumption

vectors in list  $\boldsymbol{L}$  have uniform directions.



Start with a list L of N vectors of length  $\leq \gamma$ .

 $\frac{\text{Heuristic assumption}}{\text{vectors in list } L \text{ have uniform directions.}}$ 

Probability  $\|m{v}_1 - m{v}_2\| \leq 0.999 \cdot \gamma$  equals relative volume spherical cap  $pprox (3/4+\epsilon)^{n/2+o(n)}$ 



Start with a list L of N vectors of length  $\leq \gamma$ .

 $\frac{\text{Heuristic assumption}}{\text{vectors in list } L \text{ have uniform directions.}}$ 

Probability  $\|m{v}_1 - m{v}_2\| \leq 0.999 \cdot \gamma$  equals relative volume spherical cap  $pprox (3/4+\epsilon)^{n/2+o(n)}$ 

 $N^2$  pairs, new list size N, so need  $N^2 \cdot (3/4)^{n/2} \geq N$ .



Start with a list L of N vectors of length  $\leq \gamma$ .

 $\frac{\text{Heuristic assumption}}{\text{vectors in list } L \text{ have uniform directions.}}$ 

Probability  $\|m{v}_1 - m{v}_2\| \leq 0.999 \cdot \gamma$  equals relative volume spherical cap  $pprox (3/4+\epsilon)^{n/2+o(n)}$ 

 $N^2$  pairs, new list size N, so need  $N^2 \cdot (3/4)^{n/2} \ge N$ .

Space:  $N \cdot \text{poly}(n) = (4/3)^{n/2+o(n)} = 2^{0.2075+o(n)}$ Time:  $N^2 \cdot \text{poly}(n) = (4/3)^{n+o(n)} = 2^{0.415n+o(n)}$ .



Start with a list L of N vectors of length  $\leq \gamma$ .

 $\frac{\text{Heuristic assumption}}{\text{vectors in list } L \text{ have uniform directions.}}$ 

Probability  $\|m{v}_1 - m{v}_2\| \leq 0.999 \cdot \gamma$  equals relative volume spherical cap  $pprox (3/4 + \epsilon)^{n/2 + o(n)}$ 

 $N^2$  pairs, new list size N, so need  $N^2 \cdot (3/4)^{n/2} \ge N$ .

Space:  $N \cdot \text{poly}(n) = (4/3)^{n/2+o(n)} = 2^{0.2075+o(n)}$ Time:  $N^2 \cdot \text{poly}(n) = (4/3)^{n+o(n)} = 2^{0.415n+o(n)}$ .



Can be improved to 
$$2^{0.292n+o(n)}!$$
.

# Solving approxSVP/CVP via basis reduction

#### Gram-Schmidt Orthogonalisation



GSO: 
$$b_i^* := \underbrace{\pi_{(b_1,\ldots,b_{i-1})^{\perp}}}_{\pi_i}(b_i)$$

# Gram-Schmidt Orthogonalisation



GSO: 
$$\boldsymbol{b}_i^* := \underbrace{\pi_{(b_1,...,b_{i-1})^{\perp}}}_{\pi_i}(\boldsymbol{b}_i)$$
  
Fundamental Area:  $\mathcal{F}_{B^*} := \prod_{i=1}^k \left[ -\frac{1}{2} \boldsymbol{b}_i^*, \frac{1}{2} \boldsymbol{b}_i^* \right]$ 

## Gram-Schmidt Orthogonalisation



GSO: 
$$\boldsymbol{b}_i^* := \underbrace{\pi_{(\boldsymbol{b}_1,\dots,\boldsymbol{b}_{i-1})^{\perp}}}_{\pi_i}(\boldsymbol{b}_i)$$
  
Fundamental Area:  $\mathcal{F}_{B^*} := \prod_{i=1}^k \left[ -\frac{1}{2} \boldsymbol{b}_i^*, \frac{1}{2} \boldsymbol{b}_i^* \right]$ 

 $\begin{array}{l} \text{Nearest plane algorithm} \\ \hline \text{Input: target } t = e \\ \text{For } j = n, \ldots, 1: \\ e \leftarrow e - \left\lfloor \frac{\langle e, b_i^* \rangle}{\langle b_i^*, b_i^* \rangle} \right\rceil b_i. \\ \hline \text{Output: } e \in \mathcal{F}_{B^*} \end{array}$ 







$$\mathsf{vol}(\mathcal{L}) = \mathsf{vol}(\mathcal{F}_{B^*}) = \prod_{i=1}^k \|b_i^*\|$$





$$\mathsf{vol}(\mathcal{L}) = \mathsf{vol}(\mathcal{F}_{B^*}) = \prod_{i=1}^k \|b_i^*\|$$





$$\mathsf{vol}(\mathcal{L}) = \mathsf{vol}(\mathcal{F}_{B^*}) = \prod_{i=1}^k \|b_i^*\|$$



74



 $\log \|b_i^*\|$ 





 $\log |b_i^*|$ 



#### Example: NTRU public vs secret basis

public and secret bases generated from the NTRU problem



# Lagrange Reduction (n=2)



Wristwatch Lemma

For any lattice  $\mathcal{L}$  of rank 2 there exists a basis  $(b_1, b_2)$  s.t.

 $\begin{aligned} \|\boldsymbol{b}_1\| \leq \|\boldsymbol{b}_2\| \\ |\langle \boldsymbol{b}_1, \boldsymbol{b}_2 \rangle| \leq \frac{1}{2} \|\boldsymbol{b}_1\| \\ \downarrow \\ \|\boldsymbol{b}_1^*\| \leq \sqrt{\frac{4}{3}} \cdot \|\boldsymbol{b}_2^*\| \end{aligned}$ 

#### Definition

#### Definition

$$\begin{aligned} & \bigvee \\ \forall i < n, \ \| \boldsymbol{b}_i^* \| \leq \sqrt{4/3} \cdot \left\| \boldsymbol{b}_{i+1}^* \right\| \end{aligned}$$



#### Definition

#### Definition



$$\forall i < n, \|b_i^*\| \le \sqrt{4/3} \cdot \|b_{i+1}^*\|$$
$$\Downarrow \|b_1\| \le \sqrt{4/3} \cdot \operatorname{vol}(\mathcal{L})^{1/n}$$
$$\log \|b_i^*\| \underbrace{\int_{\operatorname{Decr}_{eases} Slowly}}_{\operatorname{index} i}$$

#### Definition

A basis **B** of  $\mathcal{L}$  is LLL-reduced if  $(\pi_i(b_i), \pi_i(b_{i+1}))$  is Lagrange Reduced for all i < n.

$$egin{aligned} & igvee \ & \forall i < n, \ \|b_i^*\| \leq \sqrt{4/3} \cdot \left\|b_{i+1}^*
ight\| \ & igvee \ & igvee \ & \|b_1\| \leq \sqrt{4/3}^{rac{n-1}{2}} \cdot \operatorname{vol}(\mathcal{L})^{1/n} \end{aligned}$$



# While $\exists i \text{ s.t. } (\pi_i(b_i), \pi_i(b_{i+1}))$ is not Lagrange Reduced, Langrange Reduce it.

Termination in poly-time:

Requires a slight relaxation. ( $\epsilon$ -Lagrange Reduced)

Proof argument:  $P = \sum_{i \le n} (n + 1 - i) \cdot \log \|b_i^*\|$ Decreases by  $\epsilon$  at each step and is lower-bounded.

• Define the projected sublattice basis  $B_{l:r} := (\pi_l(b_l), \ldots, \pi_l(b_{r-1}))$ .

- Define the projected sublattice basis  $B_{l:r} := (\pi_l(b_l), \ldots, \pi_l(b_{r-1})).$
- For  $\kappa = 1, \ldots, n$  solve SVP in  $\mathcal{L}(B_{\kappa:\min\{n+1,\kappa+\beta\}})$  and replace  $b_{\kappa}$ .



- Define the projected sublattice basis  $B_{l:r} := (\pi_l(b_l), \ldots, \pi_l(b_{r-1})).$
- For  $\kappa = 1, \ldots, n$  solve SVP in  $\mathcal{L}(B_{\kappa:\min\{n+1,\kappa+\beta\}})$  and replace  $b_{\kappa}$ .



- Define the projected sublattice basis  $B_{l:r} := (\pi_l(b_l), \ldots, \pi_l(b_{r-1}))$ .
- For  $\kappa = 1, \ldots, n$  solve SVP in  $\mathcal{L}(B_{\kappa:\min\{n+1,\kappa+\beta\}})$  and replace  $b_{\kappa}$ .
- ▶ Reduction better for larger blocksize  $\beta$ , but cost  $2^{0.292\beta+o(n)}$ .



- ▶ Define the projected sublattice basis  $B_{l:r} := (\pi_l(b_l), \ldots, \pi_l(b_{r-1})).$
- For  $\kappa = 1, \ldots, n$  solve SVP in  $\mathcal{L}(B_{\kappa:\min\{n+1,\kappa+\beta\}})$  and replace  $b_{\kappa}$ .
- ▶ Reduction better for larger blocksize  $\beta$ , but cost  $2^{0.292\beta+o(n)}$ .
- ▶ Behaviour well understood for 'random' lattices. [GSA]


We have seen:

• SVP can be solved in time  $2^{0.292n+o(n)}$  via lattice sieving

- SVP can be solved in time  $2^{0.292n+o(n)}$  via lattice sieving
- ▶ Lattice reduction: flattening the basis profile

- SVP can be solved in time  $2^{0.292n+o(n)}$  via lattice sieving
- ▶ Lattice reduction: flattening the basis profile



- ▶ SVP can be solved in time  $2^{0.292n+o(n)}$  via lattice sieving
- ▶ Lattice reduction: flattening the basis profile



#### We have seen:

- ▶ SVP can be solved in time  $2^{0.292n+o(n)}$  via lattice sieving
- ▶ Lattice reduction: flattening the basis profile



▶ Same algorithms also solve promise variants uSVP and BDD

We have seen:

▶ Basics of lattice theory and hard problems

- ▶ Basics of lattice theory and hard problems
- ▶ How these hard problems can be used for cryptography

- ▶ Basics of lattice theory and hard problems
- ▶ How these hard problems can be used for cryptography
- ▶ The best (known) algorithms to solve these problems

#### We have seen:

- ▶ Basics of lattice theory and hard problems
- ▶ How these hard problems can be used for cryptography
- ▶ The best (known) algorithms to solve these problems

#### What's next?

▶ Keygen: what families of lattices to use? (SIS, LWE, NTRU, ...)

#### We have seen:

- ▶ Basics of lattice theory and hard problems
- ▶ How these hard problems can be used for cryptography
- ▶ The best (known) algorithms to solve these problems

#### What's next?

- ▶ Keygen: what families of lattices to use? (SIS, LWE, NTRU, ...)
- ▶ Why do we trust these lattices? (hardness reductions)

#### We have seen:

- ▶ Basics of lattice theory and hard problems
- ▶ How these hard problems can be used for cryptography
- ▶ The best (known) algorithms to solve these problems

#### What's next?

- ▶ Keygen: what families of lattices to use? (SIS, LWE, NTRU, ...)
- ▶ Why do we trust these lattices? (hardness reductions)
- ▶ More efficiency: algebraic lattices (ideal and module lattices)

# Part II

### Plan

#### Part I

#### Lattice theory

- Lattices
- Hard problems

### $\underline{\text{Cryptography}}$

- ▶ Trapdoor bases
- ▶ Encryption, Signature

### Cryptanalysis

- ▶ Lattice Sieving
- ▶ Basis Reduction



SVP and CVP are hard in the worst case

SVP and CVP are hard in the worst case

▶ no efficient algorithm that works for any lattice

SVP and CVP are hard in the worst case

- ▶ no efficient algorithm that works for any lattice
- ▶ but for some lattice it might be easier

SVP and CVP are hard in the worst case

- ▶ no efficient algorithm that works for any lattice
- ▶ but for some lattice it might be easier

For crypto, we need problems that are hard on average

(i.e., for a random instance, the problem is hard with overwhelming probability)

# random q-ary lattices

## q-ary lattices

Notations: q, n, m integers,  $1 \leq n \ll m$ ,  $\mathbb{Z}_q := \mathbb{Z}/q\mathbb{Z}$ 

 $\blacktriangleright$  A lattice  $\mathcal{L} \subset \mathbb{R}^m$  of dimension m is called  $q ext{-ary}$  if

 $q\mathbb{Z}^m\subset\mathcal{L}\subset\mathbb{Z}^m.$ 

• Let  $A \in \mathbb{Z}_q^{m \times n}$ , then we define the row-generated q-ary lattice  $\Lambda_q(A) := \{ y \in \mathbb{Z}^m : y \equiv Ax \mod q \text{ for some } x \in \mathbb{Z}_q^n \} = A\mathbb{Z}^n + q\mathbb{Z}^m$ 

▶ and the parity-check *q*-ary lattice

 $\Lambda_q^{\perp}(A) := \{ x \in \mathbb{Z}^m : x^{\top}A \equiv 0 \bmod q \} = \ker(A^{\top} : \mathbb{Z}^m \to \mathbb{Z}_q^n)$ 

• Exercise: if q prime and A has full column-rank, then

 $\operatorname{vol}(\Lambda_q(A)) = q^{m-n}, \quad \operatorname{vol}(\Lambda_q^{\perp}(A)) = q^n$ 



41 / 74





Suppose q = 5, n = 1, m = 2, $A = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$  $\Lambda_q(A) = A\mathbb{Z}^n + q\mathbb{Z}^m = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot \mathbb{Z} + 5\mathbb{Z}^2$ 



Suppose q = 5, n = 1, m = 2, $A = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$  $\Lambda_q(A) = A\mathbb{Z}^n + q\mathbb{Z}^m = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot \mathbb{Z} + 5\mathbb{Z}^2$ 



Suppose q = 5, n = 1, m = 2, $A = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$  $\Lambda_q(A) = A\mathbb{Z}^n + q\mathbb{Z}^m = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot \mathbb{Z} + 5\mathbb{Z}^2$ 



Suppose 
$$q = 5, n = 1, m = 2,$$
  
 $A = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$   
 $\Lambda_q(A) = A\mathbb{Z}^n + q\mathbb{Z}^m = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot \mathbb{Z} + 5\mathbb{Z}^2$ 

41 / 74



Suppose q = 5, n = 1, m = 2, $A = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$  $\Lambda_q(A) = A\mathbb{Z}^n + q\mathbb{Z}^m = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot \mathbb{Z} + 5\mathbb{Z}^2$ 

Parity-check representation:

$$\begin{split} \mathsf{\Lambda}_q\left(\begin{pmatrix}1\\2\end{pmatrix}\right) &= \mathsf{\Lambda}_q^{\perp}\left(\begin{pmatrix}-2\\1\end{pmatrix}\right) \\ &= \{(x,y)\in\mathbb{Z}^2: -2x+y\equiv 0 \bmod q\} \end{split}$$

41 / 74

▶ Random *q*-ary lattice: sample  $A \in \mathcal{U}\left(\mathbb{Z}_q^{m imes n}
ight)$ , and consider  $\Lambda_q(A)$ 

- ▶ Random *q*-ary lattice: sample  $A \in \mathcal{U}\left(\mathbb{Z}_q^{m imes n}
  ight)$ , and consider  $\Lambda_q(A)$
- ▶ equivalently: sample  $\pmb{A} \in \mathcal{U}\left(\mathbb{Z}_{\pmb{q}}^{m imes (m-n)}
  ight)$ , and consider  $\pmb{\Lambda}_{\pmb{q}}^{\perp}(\pmb{A})$

- ▶ Random *q*-ary lattice: sample  $A \in \mathcal{U}\left(\mathbb{Z}_q^{m \times n}\right)$ , and consider  $\Lambda_q(A)$
- ▶ equivalently: sample  $\pmb{A} \in \mathcal{U}\left(\mathbb{Z}_{\pmb{q}}^{m imes (m-n)}
  ight)$ , and consider  $\pmb{\Lambda}_{\pmb{q}}^{\perp}(\pmb{A})$
- Defines average-case problems!

- ▶ Random *q*-ary lattice: sample  $A \in \mathcal{U}\left(\mathbb{Z}_{q}^{m \times n}\right)$ , and consider  $\Lambda_{q}(A)$
- ▶ equivalently: sample  $\pmb{A} \in \mathcal{U}\left(\mathbb{Z}_q^{m imes (m-n)}
  ight)$ , and consider  $\pmb{\Lambda}_q^{\perp}(\pmb{A})$
- Defines average-case problems!
- For  $X \in \{\text{approxSVP, approxCVP, uSVP, BDD}\}$  and m = poly(n) we have



▶ These average-case problems are also known as (I)SIS and LWE.

- ▶ Random *q*-ary lattice: sample  $A \in \mathcal{U}\left(\mathbb{Z}_q^{m \times n}\right)$ , and consider  $\Lambda_q(A)$
- ▶ equivalently: sample  $\pmb{A} \in \mathcal{U}\left(\mathbb{Z}_q^{m imes (m-n)}
  ight)$ , and consider  $\pmb{\Lambda}_q^{\perp}(\pmb{A})$
- Defines average-case problems!
- For  $X \in \{\text{approxSVP, approxCVP, uSVP, BDD}\}$  and m = poly(n) we have



▶ These average-case problems are also known as (I)SIS and LWE.

- ▶ Random *q*-ary lattice: sample  $A \in \mathcal{U}\left(\mathbb{Z}_q^{m \times n}\right)$ , and consider  $\Lambda_q(A)$
- ▶ equivalently: sample  $\pmb{A} \in \mathcal{U}\left(\mathbb{Z}_q^{m imes (m-n)}
  ight)$ , and consider  $\pmb{\Lambda}_q^{\perp}(\pmb{A})$
- Defines average-case problems!
- For  $X \in \{\text{approxSVP, approxCVP, uSVP, BDD}\}$  and m = poly(n) we have



Worst-case to average-case reduction

- ▶ Random *q*-ary lattice: sample  $A \in \mathcal{U}\left(\mathbb{Z}_q^{m \times n}\right)$ , and consider  $\Lambda_q(A)$
- ▶ equivalently: sample  $\pmb{A} \in \mathcal{U}\left(\mathbb{Z}_q^{m imes (m-n)}
  ight)$ , and consider  $\pmb{\Lambda}_q^{\perp}(\pmb{A})$
- Defines average-case problems!
- For  $X \in \{\text{approxSVP, approxCVP, uSVP, BDD}\}$  and m = poly(n) we have



Worst-case to average-case reduction

▶ These average-case problems are also known as (I)SIS and LWE.

### The SIS problem



<sup>[</sup>Ajt96] Ajtai. Generating hard instances of lattice problems. STOC.

### The SIS problem



<sup>[</sup>Ajt96] Ajtai. Generating hard instances of lattice problems. STOC.

### The SIS problem



Solving approx-SVPSolving SISSolving approx-SVPin any lattice $\geq$  with non-negligible $\gtrsim$ in any latticelattice of rank mprobabilityof rank n

<sup>[</sup>Ajt96] Ajtai. Generating hard instances of lattice problems. STOC.
## The SIS problem



<sup>[</sup>Ajt96] Ajtai. Generating hard instances of lattice problems. STOC.

#### Theorem [Ajt96]

For any  $m = \operatorname{poly}(n)$  and B > 0 and sufficiently large  $q \ge B \cdot \operatorname{poly}(n)$ , it holds that solving SIS is at least as hard as solving  $\gamma$ -SIVP on arbitrary *n*-dimensional lattice, for some approximation factor  $\gamma = B \cdot \operatorname{poly}(n)$ .

(SIVP = shortest independent vectors problems.

Objective: find n short linearly independent vectors in the lattice)

<sup>[</sup>Ajt96] Ajtai. Generating hard instances of lattice problems. STOC.

#### Theorem [Ajt96]

For any  $m = \operatorname{poly}(n)$  and B > 0 and sufficiently large  $q \ge B \cdot \operatorname{poly}(n)$ , it holds that solving SIS is at least as hard as solving  $\gamma$ -SIVP on arbitrary *n*-dimensional lattice, for some approximation factor  $\gamma = B \cdot \operatorname{poly}(n)$ .

(SIVP = shortest independent vectors problems.

Objective: find n short linearly independent vectors in the lattice)

- ▶ the **poly** quantities have been improved in more recent works
- $\blacktriangleright$  for typical parameters: SIS  $\cong$  ISIS
- ▶ see [Pei16] for a survey

<sup>[</sup>Pei16] Peikert. A decade of lattice cryptography. Foundations and trends in theoretical computer science







$$\Lambda_q^{\perp}(A) = \{x \in \mathbb{Z}^m \,|\, x^{\mathsf{T}}A = 0 \bmod q\}$$

45 / 74





$$\Lambda_q^{\perp}(A) = \{ x \in \mathbb{Z}^m \, | \, x^{\mathsf{T}}A = 0 \bmod q \}$$

SIS  $\approx$  approx-SVP in random  $\Lambda_q^{\perp}(A)$ 

Average-case approx-SVP problem

45 / 74





$$\Lambda_q^{\perp}(A) = \{x \in \mathbb{Z}^m \,|\, x^{\mathsf{T}}A = 0 \bmod q\}$$

ISIS  $\approx$  approx-CVP in random  $\Lambda_q^{\perp}(A)$ 

Average-case approx-CVP problem

45 / 74

## Trapdoor basis

#### Lemma [Ajt99]

One can efficiently create a uniform SIS lattice  $\Lambda_q^{\perp}(A)$  together with a short basis of it.

<sup>[</sup>Ajt99] Ajtai. Generating hard instances of the short basis problem. ICALP.

## Trapdoor basis

#### Lemma [Ajt99]

One can efficiently create a uniform SIS lattice  $\Lambda_q^{\perp}(A)$  together with a short basis of it.

Idea: start with a short basis, then perturb and randomize it

<sup>[</sup>Ajt99] Ajtai. Generating hard instances of the short basis problem. ICALP.

## Trapdoor basis

#### Lemma [Ajt99]

One can efficiently create a uniform SIS lattice  $\Lambda_q^{\perp}(A)$  together with a short basis of it.

Idea: start with a short basis, then perturb and randomize it



<sup>[</sup>Ajt99] Ajtai. Generating hard instances of the short basis problem. ICALP.

### Hash-and-sign signature scheme from SIS

Sign: hash message to  $t \in \mathbb{Z}_q^m$ , sample nearby  $s \in \Lambda_q^{\perp}(A)$  with sk Verify:  $s \in \Lambda_q^{\perp}(A) \land \|t - s\| \leq B$ 



## Hash-and-sign signature scheme from SIS

Sign: hash message to  $t\in \mathbb{Z}_q^m$ , sample nearby  $s\in \Lambda_q^\perp(A)$  with sk Verify:  $s\in \Lambda_q^\perp(A)\wedge \|t-s\|\leq B$ 

Security proof

 $\texttt{key-recovery} \geq \texttt{SIS} \texttt{ problem}$ 

signature forgery  $\geq$  ISIS problem

(assuming no leakage from sampling

can be proven in Random Oracle Model) .

Signature scheme based on hard average-case lattice problem





<sup>[</sup>Reg05] Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC.



<sup>[</sup>Reg05] Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC.



<sup>[</sup>Reg05] Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC.



<sup>[</sup>Reg05] Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC.

#### Theorem [Reg05]

For any m = poly(n), modulus  $q \leq 2^{\text{poly}(n)}$  and  $B \geq 2\sqrt{n}$ , solving LWE is at least as hard as quantumly solving  $\gamma$ -SIVP on arbitrary n-dimensional lattice, for some approximation factor  $\gamma = \tilde{O}(n \cdot q/B)$ .

where reduction is for a variant of LWE where s and e are sampled from a discrete Gaussian distribution of parameter B where  $\mathcal{B}$ 

<sup>[</sup>Reg05] Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC.

#### Theorem [Reg05]

For any m = poly(n), modulus  $q \leq 2^{\text{poly}(n)}$  and  $B \geq 2\sqrt{n}$ , solving LWE is at least as hard as quantumly solving  $\gamma$ -SIVP on arbitrary n-dimensional lattice, for some approximation factor  $\gamma = \tilde{O}(n \cdot q/B)$ .

 $\Im$  the reduction is for a variant of LWE where *s* and *e* are sampled from a discrete Gaussian distribution of parameter *B* 

Remark: the reduction can be made fully classical [Pei09, BLPRS13]

[Pei09] Peikert. Public-key cryptosystems from the worst-case shortest vector problem. STOC.

[BLPRS13] Brakerski, Langlois, Peikert, Regev, and Stehlé. Classical hardness of learning with errors. STOC

# LWE is a lattice problem

LWE instance 
$$(A, b = A + e \mod q)$$
, e small

#### LWE is a lattice problem



### LWE is a lattice problem







decision LWE 
$$\xleftarrow{\sim}$$
 (search) LWE



decision LWE 
$$\xleftarrow{\sim}$$
 (search) LWE

 $\Rightarrow$  decision problems can be easier to use for crypto

if dec-LWE is hard:

$$\left( \begin{array}{c} A \end{array}, \begin{array}{c} b \end{array} = \begin{array}{c} A \end{array} \overset{s}{=} + \begin{array}{c} e \end{array} \mod q \right) \approx \left( \begin{array}{c} A \end{array}, \begin{array}{c} b \end{array} \right)$$

if dec-LWE is hard:

$$\left( \begin{array}{c} A \end{array}, \begin{array}{c} b \end{array} = \begin{array}{c} A \end{array} \left( \begin{array}{c} s \end{array} \right) + \begin{array}{c} e \end{array} \mod q \end{array} \right) \approx \left( \begin{array}{c} A \end{array}, \begin{array}{c} b \end{array} \right)$$

BDD: BDD target  $b \approx$  uniform random target

if dec-LWE is hard:

$$\begin{bmatrix} \mathbf{A} \\ \mathbf{b} \end{bmatrix} = \begin{bmatrix} \mathbf{A} \end{bmatrix}^{\mathbf{s}} + \begin{bmatrix} \mathbf{e} \end{bmatrix} \mod q \end{bmatrix} \approx \begin{pmatrix} \mathbf{A} \\ \mathbf{b} \end{bmatrix}$$

BDD: For a random q-ary lattice: BDD target  $b \approx$  uniform random target

random q-ary lattice with planted short vector uSVP:  $\approx$ random q-ary lattice

if dec-LWE is hard:

$$A, b = A + e \mod q \approx (A, b)$$

BDD: For a random q-ary lattice: BDD target  $b \approx$  uniform random target

random q-ary lattice with planted short vector uSVP:  $\approx$ random q-ary lattice

# useful in security proofs!



#### KeyGen:

$$pk = (A, b = As + e), P = \begin{pmatrix} A & b \\ 0 & 1 \end{pmatrix}.$$
  
sk = e, short vector  $\begin{pmatrix} e \\ 1 \end{pmatrix} \in \Lambda_q(P).$ 



KeyGen:

 $pk = (A, b = As + e), P = \begin{pmatrix} A & b \\ 0 & 1 \end{pmatrix}.$   $sk = e, \text{ short vector } \begin{pmatrix} e \\ 1 \end{pmatrix} \in \Lambda_q(P).$ Encrypt(m, pk): Generate: BDD instance  $t = v + e' \text{ in } \Lambda_q^{\perp}(P)$ 

Dutput: 
$$c = t + \lfloor \frac{q}{2} \rfloor \cdot m \cdot (0, \ldots, 0, 1)^\top$$
.



KeyGen:

 $pk = (A, b = As + e), P = \begin{pmatrix} A & b \\ 0 & 1 \end{pmatrix}.$   $sk = e, \text{ short vector } \begin{pmatrix} e \\ 1 \end{pmatrix} \in \Lambda_q(P).$ Encrypt(m, pk):

Generate: BDD instance t = v + e' in  $\Lambda_q^{\perp}(P)$ Output:  $c = t + \lfloor \frac{q}{2} \rfloor \cdot m \cdot (0, \dots, 0, 1)^{\top}$ .



KeyGen:

 $pk = (A, b = As + e), P = \begin{pmatrix} A & b \\ 0 & 1 \end{pmatrix}.$   $sk = e, \text{ short vector } \begin{pmatrix} e \\ 1 \end{pmatrix} \in \Lambda_q(P).$ Encrypt(m, pk):

Generate: BDD instance t = v + e' in  $\Lambda_q^{\perp}(P)$ Output:  $c = t + \lfloor \frac{q}{2} \rfloor \cdot m \cdot (0, \dots, 0, 1)^{\top}$ .



KeyGen:

 $pk = (A, b = As + e), P = \begin{pmatrix} A & b \\ 0 & 1 \end{pmatrix}.$   $sk = e, \text{ short vector } \begin{pmatrix} e \\ 1 \end{pmatrix} \in \Lambda_q(P).$ Encrypt(m, pk):

Generate: BDD instance t = v + e' in  $\Lambda_q^{\perp}(P)$ Output:  $c = t + \lfloor \frac{q}{2} \rfloor \cdot m \cdot (0, \dots, 0, 1)^{\top}$ .



#### KeyGen:

 $\mathsf{pk} = (\mathsf{A}, \mathsf{b} = \mathsf{As} + \mathsf{e}), \mathsf{P} = \begin{pmatrix} \mathsf{A} & \mathsf{b} \\ \mathsf{0} & 1 \end{pmatrix}.$  $\mathsf{sk} = e$ , short vector  $\binom{e}{1} \in \Lambda_q(P)$ . Encrypt(*m*, *pk*) : Generate: BDD instance t = v + e' in  $\Lambda_a^{\perp}(P)$ Output:  $c = t + \left\lfloor \frac{q}{2} \right\rfloor \cdot m \cdot (0, \ldots, 0, 1)^{\top}$ . Decrypt(c, sk): Compute:  $x = \left\langle c, \begin{pmatrix} e \\ 1 \end{pmatrix} \right\rangle \mod q$ . Output:  $m' = \begin{cases} 0 & \text{, if } -\frac{q}{4} \le x \le \frac{q}{4} \\ 1 & \text{, else} \end{cases}$ 53



#### KeyGen:

 $\mathsf{pk} = (\mathsf{A}, \mathsf{b} = \mathsf{As} + \mathsf{e}), \mathsf{P} = \begin{pmatrix} \mathsf{A} & \mathsf{b} \\ \mathsf{0} & 1 \end{pmatrix}.$  $\mathsf{sk} = e$ , short vector  $\binom{e}{1} \in \Lambda_q(P)$ . Encrypt(*m*, *pk*) : Generate: BDD instance t = v + e' in  $\Lambda_a^{\perp}(P)$ Output:  $c = t + \left| \frac{q}{2} \right| \cdot m \cdot (0, \dots, 0, 1)^{\top}$ . Decrypt(c, sk): Compute:  $x = \left\langle c, \begin{pmatrix} e \\ 1 \end{pmatrix} \right\rangle \mod q$ . Output:  $m' = \begin{cases} 0 & \text{, if } -\frac{q}{4} \le x \le \frac{q}{4} \\ 1 & \text{, else} \end{cases}$ 53





 $\mathsf{pk} = (\mathsf{A}, \mathsf{b} = \mathsf{As} + \mathsf{e}), \mathsf{P} = \begin{pmatrix} \mathsf{A} & \mathsf{b} \\ \mathsf{0} & \mathsf{1} \end{pmatrix}.$  $\mathsf{sk} = e$ , short vector  $\binom{e}{1} \in \Lambda_q(P)$ . Encrypt(*m*, *pk*) : Generate: BDD instance t = v + e' in  $\Lambda_a^{\perp}(P)$ Output:  $c = t + \left\lfloor \frac{q}{2} \right\rfloor \cdot m \cdot (0, \ldots, 0, 1)^{\top}$ . Decrypt(c, sk): Compute:  $x = \left\langle c, \begin{pmatrix} e \\ 1 \end{pmatrix} \right\rangle \mod q$ . Output:  $m' = \begin{cases} 0 & \text{, if } -\frac{q}{4} \leq x \leq \frac{q}{4} \\ 1 & \text{, else} \end{cases}$ . 53
SIS and LWE are average-case problems

SIS and LWE are average-case problems  $\Rightarrow$  Good for crypto (negligible probability to sample a weak key)

SIS and LWE are average-case problems  $\Rightarrow$  Good for crypto (negligible probability to sample a weak key)

family of random q-ary lattices

SIS and LWE are average-case problems  $\Rightarrow$  Good for crypto (negligible probability to sample a weak key)

family of random q-ary lattices (I)SIS  $\xleftarrow{\sim}$  average-case SVP/CVP LWE  $\xleftarrow{\sim}$  average case BDD/uSVP

#### LWE vs SIS



#### LWE vs SIS



#### LWE vs SIS



Exercise

Prove that decision-LWE  $\leq$  SIS

Hint: See decryption of LWE encryption scheme

#### (decision) LWE / SIS:

▶ lattice problems over random *q*-ary lattices

- ▶ lattice problems over random *q*-ary lattices
- ▶ all somewhat equivalent (quantumly)

- ▶ lattice problems over random *q*-ary lattices
- ▶ all somewhat equivalent (quantumly)
- ▶ as hard as worst-case lattice problems

- ▶ lattice problems over random *q*-ary lattices
- ▶ all somewhat equivalent (quantumly)
- ▶ as hard as worst-case lattice problems
  - ▶ no major flaw in the design
  - but cryptographic constructions choose smaller parameters than the ones needed for the reductions

- ▶ lattice problems over random *q*-ary lattices
- ▶ all somewhat equivalent (quantumly)
- ▶ as hard as worst-case lattice problems
  - ▶ no major flaw in the design
  - but cryptographic constructions choose smaller parameters than the ones needed for the reductions
- ▶ best known algorithm has time  $2^{\Omega(m)}$  (for well chosen parameters q and B)

- ▶ lattice problems over random *q*-ary lattices
- all somewhat equivalent (quantumly)
- ▶ as hard as worst-case lattice problems
  - ▶ no major flaw in the design
  - but cryptographic constructions choose smaller parameters than the ones needed for the reductions
- ▶ best known algorithm has time  $2^{\Omega(m)}$  (for well chosen parameters q and B)
  - ▶ by transforming LWE and (I)SIS into SVP/CVP instances

- ▶ lattice problems over random *q*-ary lattices
- ▶ all somewhat equivalent (quantumly)
- ▶ as hard as worst-case lattice problems
  - no major flaw in the design
  - but cryptographic constructions choose smaller parameters than the ones needed for the reductions
- ▶ best known algorithm has time  $2^{\Omega(m)}$  (for well chosen parameters q and B)
  - ▶ by transforming LWE and (I)SIS into SVP/CVP instances
- ▶ useful survey [Pei16]

# Algebraic lattices

 $\blacktriangleright$  A lattice of dimension n is described by some basis  $B \in \mathbb{R}^{n imes n}$ 

▶ A lattice of dimension *n* is described by some basis  $B \in \mathbb{R}^{n \times n}$ ⇒  $n^2$  coefficients,  $(n = 1000, n^2 = 10^6)$ 

- ▶ A lattice of dimension *n* is described by some basis  $B \in \mathbb{R}^{n \times n}$ ⇒  $n^2$  coefficients,  $(n = 1000, n^2 = 10^6)$
- ▶ Storage: multiple MB or GB of data

- ▶ A lattice of dimension *n* is described by some basis  $B \in \mathbb{R}^{n \times n}$ ⇒  $n^2$  coefficients,  $(n = 1000, n^2 = 10^6)$
- ▶ Storage: multiple MB or GB of data
- Efficiency: matrix-matrix product  $O(n^3)$ , matrix-vector  $O(n^2)$

- ▶ A lattice of dimension *n* is described by some basis  $B \in \mathbb{R}^{n \times n}$ ⇒  $n^2$  coefficients,  $(n = 1000, n^2 = 10^6)$
- ▶ Storage: multiple MB or GB of data
- Efficiency: matrix-matrix product  $O(n^3)$ , matrix-vector  $O(n^2)$

(we ignore here the dependency on the size of each coefficient)

- ▶ A lattice of dimension *n* is described by some basis  $B \in \mathbb{R}^{n \times n}$ ⇒  $n^2$  coefficients,  $(n = 1000, n^2 = 10^6)$
- ▶ Storage: multiple MB or GB of data
- Efficiency: matrix-matrix product  $O(n^3)$ , matrix-vector  $O(n^2)$

(we ignore here the dependency on the size of each coefficient)

Idea: add (algebraic) structure

## Number field: $K = \mathbb{Q}[X]/P(X)$ (*P* irreducible, deg(*P*) = *d*)

## Number field: $K = \mathbb{Q}[X]/P(X)$ (*P* irreducible, deg(P) = d)

- $\blacktriangleright K = \mathbb{Q}$
- $ightarrow K = \mathbb{Q}[X]/(X^d+1)$  with  $d = 2^\ell \rightsquigarrow$  power-of-two cyclotomic field
- $\blacktriangleright$   $K = \mathbb{Q}[X]/(X^d X 1)$  with d prime  $\rightsquigarrow$  NTRUPrime field

# Number field: $K = \mathbb{Q}[X]/P(X)$ (*P* irreducible, deg(*P*) = *d*)

- $\blacktriangleright \ K = \mathbb{Q}$
- $ightarrow K = \mathbb{Q}[X]/(X^d+1)$  with  $d = 2^\ell \rightsquigarrow$  power-of-two cyclotomic field
- ▶  $K = \mathbb{Q}[X]/(X^d X 1)$  with d prime  $\rightsquigarrow$  NTRUPrime field

### Ring of integers: $\mathcal{O}_{\mathcal{K}} \subset \mathcal{K}$ , for this talk $\mathcal{O}_{\mathcal{K}} = \mathbb{Z}[\mathcal{X}]/\mathcal{P}(\mathcal{X})$ (more generally $\mathbb{Z}[\mathcal{X}]/\mathcal{P}(\mathcal{X}) \subseteq \mathcal{O}_{\mathcal{K}}$ but $\mathcal{O}_{\mathcal{K}}$ can be larger)

# Number field: $K = \mathbb{Q}[X]/P(X)$ (*P* irreducible, deg(P) = d)

 $\blacktriangleright \ K = \mathbb{Q}$ 

- $ightarrow K = \mathbb{Q}[X]/(X^d+1)$  with  $d=2^\ell wo$  power-of-two cyclotomic field
- $K = \mathbb{Q}[X]/(X^d X 1)$  with d prime  $\rightsquigarrow$  NTRUPrime field

Ring of integers:  $\mathcal{O}_K \subset K$ , for this talk  $\mathcal{O}_K = \mathbb{Z}[X]/P(X)$ (more generally  $\mathbb{Z}[X]/P(X) \subseteq \mathcal{O}_K$  but  $\mathcal{O}_K$  can be larger)

 $\blacktriangleright \mathcal{O}_{K} = \mathbb{Z}$ 

- $ightarrow \mathcal{O}_{K} = \mathbb{Z}[X]/(X^{d}+1)$  with  $d=2^{\ell}$  ightarrow power-of-two cyclotomic ring
- ▶  $\mathcal{O}_{\mathcal{K}} = \mathbb{Z}[X]/(X^d X 1)$  with d prime  $\rightsquigarrow$  NTRUPrime ring of integers

 $(K = \mathbb{Q}[X]/P(X), \quad \alpha_1, \cdots, \alpha_d \text{ complex roots of } P(X))$ 

 $\begin{array}{rcl} \text{Coefficient embedding:} & \pmb{\Sigma}: & \pmb{K} & \rightarrow & \mathbb{R}^d \\ & & \sum_{i=0}^{d-1} y_i X^i & \mapsto & (y_0, \cdots, y_{d-1}) \end{array}$   $\begin{array}{rcl} \text{Canonical embedding:} & \sigma: & \pmb{K} & \rightarrow & \mathbb{C}^d \\ & & & y(X) & \mapsto & (y(\alpha_1), \cdots, y(\alpha_d)) \end{array}$ 

 $(K = \mathbb{Q}[X]/P(X), \quad \alpha_1, \cdots, \alpha_d \text{ complex roots of } P(X))$ 

 $\blacktriangleright$  both embeddings induce a (different) geometry on  $\pmb{K}$ 

 $(K = \mathbb{Q}[X]/P(X), \quad \alpha_1, \cdots, \alpha_d \text{ complex roots of } P(X))$ 

Coefficient embedding:  $\Sigma : \qquad K \rightarrow \mathbb{R}^d$  $\sum_{i=0}^{d-1} y_i X^i \mapsto (y_0, \cdots, y_{d-1})$ 

 $\blacktriangleright$  both embeddings induce a (different) geometry on  $\pmb{K}$ 

#### Which embedding should we choose?

- coefficient embedding is used for constructions (efficient implementation)
- canonical embedding is used in cryptanalysis / reductions (nice mathematical properties)

 $(K = \mathbb{Q}[X]/P(X), \quad \alpha_1, \cdots, \alpha_d \text{ complex roots of } P(X))$ 

Coefficient embedding:  $\Sigma : \qquad K \rightarrow \mathbb{R}^d$  $\sum_{i=0}^{d-1} y_i X^i \mapsto (y_0, \cdots, y_{d-1})$ 

 $\begin{array}{rcl} \texttt{Canonical embedding:} & \sigma: & \mathcal{K} & \to & \mathbb{C}^d \\ & & & & & \\ & & & & & \\ & & & & & (y(\alpha_1), \cdots, y(\alpha_d)) \end{array}$ 

 $\blacktriangleright$  both embeddings induce a (different) geometry on  $\pmb{K}$ 

#### Which embedding should we choose?

- coefficient embedding is used for constructions (efficient implementation)
- canonical embedding is used in cryptanalysis / reductions (nice mathematical properties)
- $\blacktriangleright$  for fields used in crypto, both geometries are pprox the same

#### Ideal: $I \subseteq \mathcal{O}_K$ is an ideal if

- $\ \ \, x+y\in \textit{I} \text{ for all } x,y\in \textit{I}$
- ▶  $a \cdot x \in I$  for all  $a \in \mathcal{O}_K$  and  $x \in I$

Ideal:  $I \subseteq \mathcal{O}_K$  is an ideal if  $\succ x + y \in I$  for all  $x, y \in I$  $\rightarrowtail a \cdot x \in I$  for all  $a \in \mathcal{O}_K$  and  $x \in I$ 

▶  $I_1 = \{2a \mid a \in \mathbb{Z}\}$  and  $J_1 = \{6a \mid a \in \mathbb{Z}\}$  in  $\mathcal{O}_K = \mathbb{Z}$ 

▶  $I_2 = \{a + b \cdot X \mid a + b = 0 \mod 2, a, b \in \mathbb{Z}\}$  in  $\mathcal{O}_K = \mathbb{Z}[X]/(X^2 + 1)$ 

Ideal:  $I \subseteq \mathcal{O}_K$  is an ideal if  $\succ x + y \in I$  for all  $x, y \in I$  $\rightarrowtail a \cdot x \in I$  for all  $a \in \mathcal{O}_K$  and  $x \in I$ 

 $\blacktriangleright$   $I_1 = \{2a \mid a \in \mathbb{Z}\}$  and  $J_1 = \{6a \mid a \in \mathbb{Z}\}$  in  $\mathcal{O}_K = \mathbb{Z}$ 

▶  $I_2 = \{a + b \cdot X \mid a + b = 0 \mod 2, a, b \in \mathbb{Z}\}$  in  $\mathcal{O}_K = \mathbb{Z}[X]/(X^2 + 1)$ 

Principal ideals:  $\langle g \rangle := \{g \cdot a \mid a \in O_K\}$ 

Ideal:  $I \subseteq \mathcal{O}_K$  is an ideal if  $\succ x + y \in I$  for all  $x, y \in I$  $\rightarrowtail a \cdot x \in I$  for all  $a \in \mathcal{O}_K$  and  $x \in I$ 

▶  $I_1 = \{2a \mid a \in \mathbb{Z}\}$  and  $J_1 = \{6a \mid a \in \mathbb{Z}\}$  in  $\mathcal{O}_K = \mathbb{Z}$ 

▶  $I_2 = \{a + b \cdot X \mid a + b = 0 \mod 2, a, b \in \mathbb{Z}\}$  in  $\mathcal{O}_K = \mathbb{Z}[X]/(X^2 + 1)$ 

Principal ideals:  $\langle g \rangle := \{g \cdot a \mid a \in O_K\}$ 

 $I_1 = \{2a \mid a \in \mathbb{Z}\} = \langle 2 \rangle$   $I_2 = \{a + b \cdot X \mid a + b = 0 \mod 2, a, b \in \mathbb{Z}\} = \langle 1 + X \rangle$ 

## Ideal lattices

 $\mathcal{O}_K$  is a lattice via the coefficient embedding  $\pmb{\Sigma}\colon$ 

- $\triangleright \quad \mathcal{O}_{\mathcal{K}} = 1 \cdot \mathbb{Z} + \mathbf{X} \cdot \mathbb{Z} + \cdots + \mathbf{X}^{d-1} \cdot \mathbb{Z}$
- $\Sigma(\mathcal{O}_{\mathcal{K}}) = \Sigma(1) \cdot \mathbb{Z} + \cdots + \Sigma(X^{d-1}) \cdot \mathbb{Z}$

## Ideal lattices

 $\mathcal{O}_K$  is a lattice via the coefficient embedding  $\pmb{\Sigma}\colon$ 

- $\triangleright \quad \mathcal{O}_{\mathcal{K}} = 1 \cdot \mathbb{Z} + \mathbf{X} \cdot \mathbb{Z} + \dots + \mathbf{X}^{d-1} \cdot \mathbb{Z}$
- $\Sigma(\mathcal{O}_{\mathcal{K}}) = \Sigma(1) \cdot \mathbb{Z} + \cdots + \Sigma(X^{d-1}) \cdot \mathbb{Z}$

 $\Sigma(\mathcal{O}_{\mathcal{K}})$  is a lattice of rank d in  $\mathbb{Z}^d$  with basis  $(\Sigma(X^i))_{0 \leq i < d}$ 

## Ideal lattices

 $\mathcal{O}_K$  is a lattice via the coefficient embedding  $\pmb{\Sigma}\colon$ 

- $\triangleright \quad \mathcal{O}_{\mathcal{K}} = 1 \cdot \mathbb{Z} + \mathbf{X} \cdot \mathbb{Z} + \dots + \mathbf{X}^{d-1} \cdot \mathbb{Z}$
- $\triangleright \quad \boldsymbol{\Sigma}(\mathcal{O}_{\mathcal{K}}) = \boldsymbol{\Sigma}(1) \cdot \mathbb{Z} + \cdots + \boldsymbol{\Sigma}(\boldsymbol{X}^{d-1}) \cdot \mathbb{Z}$

 $\mathbf{\Sigma}(\mathcal{O}_{\mathcal{K}})$  is a lattice of rank d in  $\mathbb{Z}^d$  with basis  $(\mathbf{\Sigma}(\mathbf{X}^i))_{0 \leq i < d}$ 

- $\langle {m g} 
  angle$  is a lattice:
- $\bullet \quad \langle g \rangle = g \cdot \mathcal{O}_{\mathcal{K}} = g \cdot 1 \cdot \mathbb{Z} + g \cdot \mathbf{X} \cdot \mathbb{Z} + \dots + g \cdot \mathbf{X}^{d-1} \cdot \mathbb{Z}$
- $\succ \quad \Sigma(\langle g \rangle) = \Sigma(g) \cdot \mathbb{Z} + \cdots + \Sigma(g \cdot X^{d-1}) \cdot \mathbb{Z}$
## Ideal lattices

 $\mathcal{O}_K$  is a lattice via the coefficient embedding  $\pmb{\Sigma}\colon$ 

- $\triangleright \quad \mathcal{O}_{\mathcal{K}} = 1 \cdot \mathbb{Z} + \mathbf{X} \cdot \mathbb{Z} + \dots + \mathbf{X}^{d-1} \cdot \mathbb{Z}$
- $\triangleright \quad \boldsymbol{\Sigma}(\mathcal{O}_{\mathcal{K}}) = \boldsymbol{\Sigma}(1) \cdot \mathbb{Z} + \cdots + \boldsymbol{\Sigma}(\boldsymbol{X}^{d-1}) \cdot \mathbb{Z}$

 $\mathbf{\Sigma}(\mathcal{O}_{\mathcal{K}})$  is a lattice of rank d in  $\mathbb{Z}^d$  with basis  $(\mathbf{\Sigma}(\mathbf{X}^i))_{0 \leq i < d}$ 

- $\langle {m g} 
  angle$  is a lattice:
- $\bullet \quad \langle g \rangle = g \cdot \mathcal{O}_{\mathcal{K}} = g \cdot 1 \cdot \mathbb{Z} + g \cdot \mathbf{X} \cdot \mathbb{Z} + \dots + g \cdot \mathbf{X}^{d-1} \cdot \mathbb{Z}$
- $\triangleright \quad \Sigma(\langle g \rangle) = \Sigma(g) \cdot \mathbb{Z} + \cdots + \Sigma(g \cdot X^{d-1}) \cdot \mathbb{Z}$

 $\Sigma(\langle g 
angle)$  is a lattice of rank d in  $\mathbb{Z}^d$  with basis  $(\Sigma(g \cdot X^i))_{0 \leq i < d}$ 

(this is also true for non principal ideals) (we can replace  ${f \Sigma}$  by  $\sigma$  and  ${\mathbb Z}^d$  by  ${\mathbb C}^d$ )











Basis of  $\langle g \rangle$ :  $g, g \cdot X, \cdots, g \cdot X^{d-1}$ Example in  $\mathcal{K} = \mathbb{Q}[X]/(X^d + 1)$ 





We have

Basis of  $\langle g \rangle$ :  $g, g \cdot X, \cdots, g \cdot X^{d-1}$ Example in  $\mathcal{K} = \mathbb{Q}[X]/(X^d + 1)$ 

| ( <b>g</b> 0       | $-g_{d-1}$ | ) |
|--------------------|------------|---|
| <b>g</b> 1         | <b>g</b> 0 |   |
| :                  | ÷          |   |
| $\mathbf{g}_{d-1}$ | $g_{d-2}$  | ) |

$$g \cdot X = \sum_{i=0}^{d-1} g_i X^{i+1} = g_{d-1} X^d + \sum_{i=0}^{d-2} g_i X^{i+1}$$
$$= -g_{d-1} + \sum_{i=0}^{d-2} g_i X^{i+1} \mod X^d + 1$$

62 / 74



Basis of  $\langle g \rangle$ :  $g, g \cdot X, \cdots, g \cdot X^{d-1}$ Example in  $\mathcal{K} = \mathbb{Q}[X]/(X^d + 1)$ 



We have

$$g \cdot X = \sum_{i=0}^{d-1} g_i X^{i+1} = g_{d-1} X^d + \sum_{i=0}^{d-2} g_i X^{i+1}$$
$$= -g_{d-1} + \sum_{i=0}^{d-2} g_i X^{i+1} \mod X^d + 1$$



We have



Basis of  $\langle g \rangle$ :  $g, g \cdot X, \cdots, g \cdot X^{d-1}$ Example in  $\mathcal{K} = \mathbb{Q}[X]/(X^d + 1)$ 



Storage:  $n^2$  coefficients  $\rightarrow n$ Time:  $O(n^2) \rightarrow O(n \log(n))$ (fast polynomial multiplication via FFT)

62 / 74

# Module lattices

(Free) module:

$$M = \{B \cdot x \, | \, x \in \mathcal{O}_K^k\}$$
 for some matrix  $B \in \mathcal{O}_K^{k imes k}$  with  $\det_K(B) 
eq 0$ 

# Module lattices

(Free) module:

 $M = \{B \cdot x \, | \, x \in \mathcal{O}_K^k\}$  for some matrix  $B \in \mathcal{O}_K^{k imes k}$  with  $\det_K(B) 
eq 0$ 

- ▶ **k** is the module rank
- ▶ **B** is a module basis of M

(if the module is not free, it has a ''pseudo-basis'' instead)

 $\Sigma(M)$  is a lattice:

• of  $\mathbb{Z}$ -rank  $n := d \cdot k$ , included in  $\mathbb{Z}^n$ 

# Module lattices

(Free) module:

 $M = \{B \cdot x \, | \, x \in \mathcal{O}_K^k\}$  for some matrix  $B \in \mathcal{O}_K^{k imes k}$  with  $\det_K(B) 
eq 0$ 

- ▶ **k** is the module rank
- ▶ B is a module basis of M

(if the module is not free, it has a ''pseudo-basis'' instead)

# $\Sigma(M)$ is a lattice:

- of  $\mathbb{Z}$ -rank  $n := d \cdot k$ , included in  $\mathbb{Z}^n$
- with basis  $(\Sigma(b_i X^j))_{\substack{1 \le i \le k \\ 0 \le j \le d}}$  (*b<sub>i</sub>* columns of *B*)

# Modules vs ideals

|            | Ideal | = | Module of rank ${f 1}$   |
|------------|-------|---|--------------------------|
| (principal | ideal | = | free module of rank $1)$ |

#### Modules vs ideals

|            | Ideal | = | Module of rank ${f l}$   |
|------------|-------|---|--------------------------|
| (principal | ideal | = | free module of rank $1)$ |

In  $K = \mathbb{Q}[X]/(X^d + 1)$ :

$$M_a = \begin{pmatrix} a_1 & -a_d & \cdots & -a_2 \\ a_2 & a_1 & \cdots & -a_3 \\ \vdots & \ddots & \ddots & \vdots \\ a_d & a_{d-1} & \cdots & a_1 \end{pmatrix}$$





#### basis of a free module lattice of rank **k**

64 / 74

# Algorithmic problems



vector problem

# Algorithmic problems



#### Notations:

- ▶ id-X = problem X restricted to ideal lattices
- ▶ mod-X<sub>k</sub> = problem X restricted to module lattices of rank k

(worst-case: we want algorithms for all ideal/module lattices)

65 / 74

#### Hardness of module SVP

Asymptotics:



[CDW17] Cramer, Ducas, Wesolowski. Short stickelberger class relations and application to ideal-SVP. Eurocrypt. [PHS19] Pellet-Mary, Hanrot, Stehlé. Approx-SVP in ideal lattices with pre-processing. Eurocrypt. [BR20] Bernard, Roux-Langlois. Twisted-PHS: using the product formula to solve approx-SVP in ideal lattices. AC.

#### (search) $mod-LWE_k$

Parameters: **q** and **B** Problem: Sample

- $\blacktriangleright \quad A \leftarrow \mathcal{U}((\mathcal{O}_K/q\mathcal{O}_K)^{m \times k})$
- ▶ secret  $s \in (\mathcal{O}_K/q\mathcal{O}_K)^k$
- error  $e \in \mathcal{O}_{K}^{m}$  with coefficients in  $\{-B, \cdots, B\}$

Given A and  $b = A \cdot s + e \mod q$ , recover s

(size of  $\boldsymbol{s}$  and  $\boldsymbol{e}$  can be defined using  $\boldsymbol{\Sigma}$  or  $\sigma$ )

#### (search) $mod-LWE_k$

Parameters: **q** and **B** Problem: Sample

- $\blacktriangleright \quad A \leftarrow \mathcal{U}((\mathcal{O}_{\mathcal{K}}/q\mathcal{O}_{\mathcal{K}})^{m \times k})$
- secret  $s \in (\mathcal{O}_K/q\mathcal{O}_K)^k$
- error  $e \in \mathcal{O}_{K}^{m}$  with coefficients in  $\{-B, \cdots, B\}$

Given A and  $b = A \cdot s + e \mod q$ , recover s

(size of  $\pmb{s}$  and  $\pmb{e}$  can be defined using  $\pmb{\Sigma}$  or  $\sigma)$ 

 $RLWE = mod - LWE_1$ 





#### How large should *m* be?

- ▶ as small as possible
- ▶ but so that the closest point to **b** is **As**



#### How large should *m* be?

- ▶ as small as possible
- ▶ but so that the closest point to **b** is **As**
- m = k is not sufficient



#### How large should *m* be?

- ▶ as small as possible
- ▶ but so that the closest point to **b** is **A**s
- m = k is not sufficient
- m = k + 1 might be sufficient depending on B and q

• we need roughly 
$$m = \mathbf{k} \cdot \frac{\log(q)}{\log(q/B)}$$

• for 
$$k=1,\ m=2$$
 is possible if  $B\lesssim \sqrt{q}$ 



#### (search) NTRU

Parameters:  $q \geq B > 1$ 

Objective: Sample  $f,g \in \mathcal{O}_K$  with coefficients in  $\{-B,\cdots,B\}$ . Given  $h = f \cdot g^{-1} \mod q$ , recover (f,g)

<sup>[</sup>HPS98] Hoffstein, Pipher, and Silverman. NTRU: a ring based public key cryptosystem. ANTS.



#### (search) NTRU

Parameters:  $q \ge B > 1$ 

Objective: Sample  $f,g \in \mathcal{O}_K$  with coefficients in  $\{-B,\cdots,B\}$ . Given  $h = f \cdot g^{-1} \mod q$ , recover (f,g)

# dec-NTRU Parameters: q, BObjective: distinguish between h as above and h uniform in $\mathcal{O}_{K}/(q\mathcal{O}_{K})$

<sup>[</sup>HPS98] Hoffstein, Pipher, and Silverman. NTRU: a ring based public key cryptosystem. ANTS.

Recall:  $h = f \cdot g^{-1} \mod q$ 

Definition (NTRU Lattice)

$$\mathcal{L}^{h,q} := \{(a,b) \in R^2 : h \cdot b = a \bmod q\}$$

Recall:  $h = f \cdot g^{-1} \mod q$ 

Definition (NTRU Lattice)

$$\mathcal{L}^{h,q} := \{(a,b) \in \mathcal{R}^2 : h \cdot b = a \bmod q\}$$

▶  $d = \deg(R)$ , rank 2 module, dimension n = 2d,  $\det(\mathcal{L}^{h,q}) = q^d$ .

Recall:  $h = f \cdot g^{-1} \mod q$ 

Definition (NTRU Lattice)

$$\mathcal{L}^{h,q} := \{(a,b) \in \mathcal{R}^2 : h \cdot b = a \bmod q\}$$

d = deg(R), rank 2 module, dimension n = 2d, det(L<sup>h,q</sup>) = q<sup>d</sup>.
 gh(L<sup>h,q</sup>) ≈ √d/πe · √q

Recall:  $h = f \cdot g^{-1} \mod q$ 

Definition (NTRU Lattice)

$$\mathcal{L}^{h,q} := \{ (a,b) \in \mathcal{R}^2 : h \cdot b = a \mod q \}$$

*d* = deg(*R*), rank 2 module, dimension *n* = 2*d*, det(*L<sup>h,q</sup>*) = *q<sup>d</sup>*.
gh(*L<sup>h,q</sup>*) ≈ √*d*/π*e* · √*q*

Short vector(s) The rotations  $(x^i \cdot f, x^i \cdot g)$  are unusually short vectors in  $\mathcal{L}^{h,q}$ .

Recall:  $h = f \cdot g^{-1} \mod q$ 

Definition (NTRU Lattice)

$$\mathcal{L}^{h,q} := \{(a,b) \in \mathcal{R}^2 : h \cdot b = a \mod q\}$$

d = deg(R), rank 2 module, dimension n = 2d, det(L<sup>h,q</sup>) = q<sup>d</sup>.
 gh(L<sup>h,q</sup>) ≈ √d/πe · √q

Short vector(s)

The rotations  $(x^i \cdot f, x^i \cdot g)$  are unusually short vectors in  $\mathcal{L}^{h,q}$ .

bad basis 
$$= \begin{pmatrix} q & h \\ 0 & 1 \end{pmatrix}$$
, good basis  $= \begin{pmatrix} f & F \\ g & G \end{pmatrix}$ 

If  $||(f,g)|| \ge \operatorname{poly}(\log n) \cdot \operatorname{gh}(\mathcal{L}^{h,q})$ 

If  $\|(f,g)\| \leq \operatorname{gh}(\mathcal{L}^{h,q})$ 

If  $||(f,g)|| \ge \operatorname{poly}(\log n) \cdot \operatorname{gh}(\mathcal{L}^{h,q})$ 

- h is statistically close to uniform mod q [SS11,WW18]
- dec-NTRU is statistically hard

If  $\|(f,g)\| \leq \operatorname{gh}(\mathcal{L}^{h,q})$ 

[SS11] Stehlé and Steinfeld. Making NTRU as secure as worst-case problems over ideal lattices. Eurocrypt.

<sup>[</sup>WW18] Wang and Wang. Provably secure NTRUEncrypt over any cyclotomic field. SAC.

- If  $||(f,g)|| \ge \operatorname{poly}(\log n) \cdot \operatorname{gh}(\mathcal{L}^{h,q})$
- ▶ h is statistically close to uniform mod q [SS11,WW18]
- dec-NTRU is statistically hard

If  $\|(f,g)\| \leq \operatorname{gh}(\mathcal{L}^{h,q})$ 

- ▶ h is not statistically close to uniform mod q
- NTRU is a special case of mod-uSVP<sub>2</sub>

<sup>[</sup>SS11] Stehlé and Steinfeld. Making NTRU as secure as worst-case problems over ideal lattices. Eurocrypt.

<sup>[</sup>WW18] Wang and Wang. Provably secure NTRUEncrypt over any cyclotomic field. SAC.

- If  $||(f,g)|| \ge \operatorname{poly}(\log n) \cdot \operatorname{gh}(\mathcal{L}^{h,q})$
- ▶ h is statistically close to uniform mod q [SS11,WW18]
- dec-NTRU is statistically hard

If  $\|(f,g)\| \leq \operatorname{gh}(\mathcal{L}^{h,q})$ 

- ▶ h is not statistically close to uniform mod q
- NTRU is a special case of mod-uSVP<sub>2</sub>

uSVP regime  $\Rightarrow$  short structured basis

 $\Rightarrow$  efficient encryption/signature scheme

(e.g. NTRUEncrypt, NTRUSign, FALCON)

[WW18] Wang and Wang. Provably secure NTRUEncrypt over any cyclotomic field. SAC.

<sup>[</sup>SS11] Stehlé and Steinfeld. Making NTRU as secure as worst-case problems over ideal lattices. Eurocrypt.

#### NTRU public vs secret basis

public and secret bases generated from the NTRU problem





▶ Algebraic structure reduces sizes and improves efficiency

# Recap

- ▶ Algebraic structure reduces sizes and improves efficiency
- ▶ Can still define average-case problems
### Recap

- ▶ Algebraic structure reduces sizes and improves efficiency
- ▶ Can still define average-case problems
- ▶ Most worst-case to average-case reductions still apply

### Recap

- ▶ Algebraic structure reduces sizes and improves efficiency
- ▶ Can still define average-case problems
- Most worst-case to average-case reductions still apply
- Ideal lattices = rank 1 modules can be vulnerable

### Recap

- ▶ Algebraic structure reduces sizes and improves efficiency
- ▶ Can still define average-case problems
- Most worst-case to average-case reductions still apply
- $\blacktriangleright$  Ideal lattices = rank 1 modules can be vulnerable
- NIST candidates (e.g. Kyber, Dilithium, Falcon) use rank ≥ 2 (seems safe so far, but arguably their weakest point)

#### Advantages:

 $\blacktriangleright$  many reductions (worst-case to average-case, search to decision,

- ...)
- ▶ some parameters might still be broken
- ▶ but gives confidence that there are no major flaws in the problems

#### Advantages:

many reductions (worst-case to average-case, search to decision, ...)

- some parameters might still be broken
- ▶ but gives confidence that there are no major flaws in the problems
- ▶ complexity of the best algorithms is quite well understood
  - LWE estimator: https://github.com/malb/lattice-estimator

#### Advantages:

many reductions (worst-case to average-case, search to decision, ...)

- some parameters might still be broken
- ▶ but gives confidence that there are no major flaws in the problems
- ▶ complexity of the best algorithms is quite well understood
  - LWE estimator: https://github.com/malb/lattice-estimator
- ▶ quite efficient if using structured lattices

#### Advantages:

many reductions (worst-case to average-case, search to decision, ...)

- some parameters might still be broken
- ▶ but gives confidence that there are no major flaws in the problems
- ▶ complexity of the best algorithms is quite well understood
  - LWE estimator: https://github.com/malb/lattice-estimator
- ▶ quite efficient if using structured lattices
- ▶ can be used in many constructions

#### Advantages:

many reductions (worst-case to average-case, search to decision, ...)

- some parameters might still be broken
- ▶ but gives confidence that there are no major flaws in the problems
- ▶ complexity of the best algorithms is quite well understood
  - LWE estimator: https://github.com/malb/lattice-estimator
- ▶ quite efficient if using structured lattices
- ▶ can be used in many constructions

#### Drawbacks:

▶ big keysizes and ciphertexts/signatures vs classical cryptography

#### Advantages:

many reductions (worst-case to average-case, search to decision, ...)

- some parameters might still be broken
- ▶ but gives confidence that there are no major flaws in the problems
- ▶ complexity of the best algorithms is quite well understood
  - LWE estimator: https://github.com/malb/lattice-estimator
- ▶ quite efficient if using structured lattices
- ▶ can be used in many constructions

#### Drawbacks:

- ▶ big keysizes and ciphertexts/signatures vs classical cryptography
- ▶ structured lattice problems are still young
  - more cryptanalysis is needed

#### Advantages:

many reductions (worst-case to average-case, search to decision, ...)

- some parameters might still be broken
- ▶ but gives confidence that there are no major flaws in the problems
- ▶ complexity of the best algorithms is quite well understood
  - LWE estimator: https://github.com/malb/lattice-estimator
- ▶ quite efficient if using structured lattices
- ▶ can be used in many constructions

#### Drawbacks:

- ▶ big keysizes and ciphertexts/signatures vs classical cryptography
- structured lattice problems are still young
  - more cryptanalysis is needed

# Thank you