
Multivariate cryptography

PQC Spring School
Porto, March 15 2024

Monika Trimoska

2

Algebraic cryptanalysis

A type of cryptanalytic methods where the problem of finding the secret key
(or any attack goal) is reduced to the problem of finding a solution to a
nonlinear multivariate polynomial system of equations.

3

Algebraic cryptanalysis

secret key

or

forgery

public key

message

multivariate
signature
scheme

x1 + x2 + 1 = 0
x1x3 + x4 = 0

algebraic modeling MQ solver

3

Algebraic cryptanalysis

secret key

or

forgery

public key

message

multivariate
signature
scheme

x1 + x2 + 1 = 0
x1x3 + x4 = 0

algebraic modeling

• FES
• Simple
• SAT solvers
• Crossbred
• FXL
• BoolSolve
• F4/F5

MQ solver

3

Algebraic cryptanalysis

secret key

or

forgery

public key

message

multivariate
signature
scheme

x1 + x2 + 1 = 0
x1x3 + x4 = 0

algebraic modeling MQ solver

3

Algebraic cryptanalysis

secret key

or

forgery

• UOV

public key

message

multivariate
signature
scheme

• Direct attack
• Kipnis-Shamir
• Reconciliation
• Intersection

x1 + x2 + 1 = 0
x1x3 + x4 = 0

algebraic modeling MQ solver

4

The MQ problem

Example. f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0

f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0

f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0

f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0

f5 : x1x2 + x2x3 + x1x4 + x3 = 0

f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

Given multivariate quadratic polynomials of variables
over a finite field , find a tuple in , such that

.

m f1, …, fm n
𝔽q x = (x1, …, xn) 𝔽n

q
f1(x) = … = fm(x) = 0

The MQ problem

Overview of solvers

𝔽2

, big 𝔽q q

FES

SAT solvers

Simple

Crossbred

 / F4 F5

FXL
BoolSolve

Hybrid

5

𝒪(qn)

 / 𝒪(2n) 𝒪(2n− 2m)

𝒪(2n− 2m)

𝒪((
n + Dreg − 1

Dreg)
ω

)

𝒪(…)

(Fast) Exhaustive Search
[Bouillaguet, Chen, Cheng, Chou, Niederhagen, Shamir, Yang, 2010]

7

Exhaustive Search

Binary search tree

0 1

7

Exhaustive Search

Binary search tree

Worst-case complexity: 𝒪(2n)

0 1

8

Exhaustive Search

Binary search tree

8

Exhaustive Search

Binary search tree

8

Exhaustive Search

Binary search tree

Worst-case complexity: 𝒪(2n)

9

Fast Exhaustive Search
* The libFES solver

0000
0001
0011
0010
0110
0111
0101
0100

Gray code

• An ordering of the binary system where two successive values differ in only one bit.

Example. n = 4

1100
1101
1111
1110
1010
1011
1001
1000

10

Fast Exhaustive Search Gray code
0000
0001
0011
0010
0110
0111
0101
0100

1100
1101
1111
1110
1010
1011
1001
1000

10

Fast Exhaustive Search Gray code
0000
0001
0011
0010
0110
0111
0101
0100

1100
1101
1111
1110
1010
1011
1001
1000

Worst-case complexity: 𝒪(2n)
! But, it differs from the depth-first traversal in the polynomial factors

Macaulay matrix

12

Linearisation
Linear systems are easy to solve, nonlinear systems are hard.

12

Linearisation
Linear systems are easy to solve, nonlinear systems are hard.

Linearisation: for each nonlinear monomial, replace all of its occurrences by a new variable.

f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

Example.

f1 : y2 + y5 + x1 + x3 + x4 = 0
f2 : y4 + y3 + y6 + x1 + x2 + x4 = 0
f3 : y5 + y6 + x1 + x3 + 1 = 0
f4 : y1 + y2 + y4 + x3 + x4 + 1 = 0
f5 : y1 + y4 + y3 + x3 = 0
f6 : y2 + y3 + y6 + x1 + x2 + x3 + x4 = 0

12

Linearisation
Linear systems are easy to solve, nonlinear systems are hard.

Linearisation: for each nonlinear monomial, replace all of its occurrences by a new variable.

f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

Example.

f1 : y2 + y5 + x1 + x3 + x4 = 0
f2 : y4 + y3 + y6 + x1 + x2 + x4 = 0
f3 : y5 + y6 + x1 + x3 + 1 = 0
f4 : y1 + y2 + y4 + x3 + x4 + 1 = 0
f5 : y1 + y4 + y3 + x3 = 0
f6 : y2 + y3 + y6 + x1 + x2 + x3 + x4 = 0

12

Linearisation
Linear systems are easy to solve, nonlinear systems are hard.

Linearisation: for each nonlinear monomial, replace all of its occurrences by a new variable.

13

Linearisation

Linearisation adds solutions: a random quadratic system of equations in variables, when , is

expected to have one solution (probability is for systems over). The corresponding linearised

system has a solution space of dimension .

m n n = m

∼
1
q

𝔽q

(n + 1
2) − m

 quadratic plus linear monomials(n
2) n

13

Linearisation

Linearisation adds solutions: a random quadratic system of equations in variables, when , is

expected to have one solution (probability is for systems over). The corresponding linearised

system has a solution space of dimension .

m n n = m

∼
1
q

𝔽q

(n + 1
2) − m

 quadratic plus linear monomials(n
2) n

Loss of information: e.g. assignment ; ; ; is part of a valid solution to the linearised
system, but .

x1 = 1 x2 = 0 y1 = 1
x1x2 ≠ y1

14

Macaulay matrix

f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

x1x2 x1x3 x1x4 x1 x2x3 x2x4 x2 x3x4 x3 x4 1

f1

f2

f3

f4

f5

f6

Monomials

Equations

14

Macaulay matrix

f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

0 1 0 1 0 1 0 0 1 1 0

0 0 1 1 1 0 1 1 0 1 0

0 0 0 1 0 1 0 1 1 0 1

1 1 0 1 1 0 0 0 1 1 1

1 0 1 1 1 0 0 0 1 0 0

0 1 1 1 0 0 1 1 1 1 0

x1x2 x1x3 x1x4 x1 x2x3 x2x4 x2 x3x4 x3 x4 1

f1

f2

f3

f4

f5

f6

Monomials

Equations

SAT solvers
CryptoMiniSat [Soos, Nohl, Castelluccia, 2009], WDSat [T., Dequen, Ionica, 2020]

Simple algorithm
[Bouillaguet, Delaplace, T., 2021]

16

Partial assignment and conflicts

17

Simple algorithm
Partial assignment

Gaussian elimination

18

Simple algorithm

Guess sufficiently many variables so that the remaining
polynomial system can be solved by linearization.

Overview of solvers

𝔽2

, big 𝔽q q

FES

SAT solvers

Simple

Crossbred

 / F4 F5

FXL
BoolSolve

Hybrid

19

𝒪(qn)

 / 𝒪(2n) 𝒪(2n− 2m)

𝒪(2n− 2m)

𝒪((
n + Dreg − 1

Dreg)
ω

)

𝒪(…)

Gröbner basis algorithms
[Buchberger, 1965]

[Lazard, 1983]
 [Faugère, 1999/2002] 

(XL [Courtois, Klimov, Patarin, Shamir, 2000])
F4/F5

21

Gröbner basis algorithms (intuition)
*We are essentially describing the XL algorithm.

22

x1x2 x1x3 x1x4 x1 x2x3 x2x4 x2 x3x4 x3 x4 1

f1

f2

f3

f4

f5

f6

0 1 0 1 0 1 0 0 1 1 0

0 0 1 1 1 0 1 1 0 1 0

0 0 0 1 0 1 0 1 1 0 1

1 1 0 1 1 0 0 0 1 1 1

1 0 1 1 1 0 0 0 1 0 0

0 1 1 1 0 0 1 1 1 1 0

Gröbner basis algorithms (intuition)
*We are essentially describing the XL algorithm.

22

f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

x1x2 x1x3 x1x4 x1 x2x3 x2x4 x2 x3x4 x3 x4 1

f1

f2

f3

f4

f5

f6

0 1 0 1 0 1 0 0 1 1 0

0 0 1 1 1 0 1 1 0 1 0

0 0 0 1 0 1 0 1 1 0 1

1 1 0 1 1 0 0 0 1 1 1

1 0 1 1 1 0 0 0 1 0 0

0 1 1 1 0 0 1 1 1 1 0

Gröbner basis algorithms (intuition)
*We are essentially describing the XL algorithm.

23

f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

x1x2 x1x3 x1x4 x1 x2x3 x2x4 x2 x3x4 x3 x4 1

f1

f2

f3

f4

f5

f6

0 1 0 1 0 1 0 0 1 1 0

0 0 1 1 1 0 1 1 0 1 0

0 0 0 1 0 1 0 1 1 0 1

1 1 0 1 1 0 0 0 1 1 1

1 0 1 1 1 0 0 0 1 0 0

0 1 1 1 0 0 1 1 1 1 0

x1x2x3 x1x2x4 x1x3x4 x2x3x4

Gröbner basis algorithms (intuition)
*We are essentially describing the XL algorithm.

x1 f1

x2 f1…

D = 3

24

f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

x1x2 x1x3 x1x4 x1 x2x3 x2x4 x2 x3x4 x3 x4 1

f1

f2

f3

f4

f5

f6

0 1 0 1 0 1 0 0 1 1 0

0 0 1 1 1 0 1 1 0 1 0

0 0 0 1 0 1 0 1 1 0 1

1 1 0 1 1 0 0 0 1 1 1

1 0 1 1 1 0 0 0 1 0 0

0 1 1 1 0 0 1 1 1 1 0

x1x2x3 x1x2x4 x1x3x4 x2x3x4

x1 f1

x2 f1

Gröbner basis algorithms (intuition)

…

*We are essentially describing the XL algorithm.

x1x2 f1

D = 4

x1x3 f1

x1x2x3x4

25

XL/Gröbner basis algorithms: complexity

25

XL/Gröbner basis algorithms: complexity

𝒪 mDreg (
n + Dreg − 1

Dreg)
ω

25

XL/Gröbner basis algorithms: complexity

𝒪 mDreg (
n + Dreg − 1

Dreg)
ω

: degree of regularityDreg (1 − t2)m

(1 − t)n
the power of the first non-positive coefficient in the expansion of

Overview of solvers

𝔽2

, big 𝔽q q

FES

SAT solvers

Simple

Crossbred

 / F4 F5

FXL
BoolSolve

Hybrid

26

𝒪(qn)

 / 𝒪(2n) 𝒪(2n− 2m)

𝒪(2n− 2m)

𝒪((
n + Dreg − 1

Dreg)
ω

)

𝒪(…)

27

Algebraic cryptanalysis: try it yourself !

Given matrices (the space of matrices over of size), find (the space of
invertible matrices over of size), such that

C1, C2, D1, D2 ∈ ℳn,n(𝔽q) 𝔽q n × n A, B ∈ GLn(𝔽q)
𝔽q n × n

 D1 = AC1B
 D2 = AC2B

Example.

27

Algebraic cryptanalysis: try it yourself !

Given matrices (the space of matrices over of size), find (the space of
invertible matrices over of size), such that

C1, C2, D1, D2 ∈ ℳn,n(𝔽q) 𝔽q n × n A, B ∈ GLn(𝔽q)
𝔽q n × n

 D1 = AC1B
 D2 = AC2B

Demo

Example.

27

Algebraic cryptanalysis: try it yourself !

Given matrices (the space of matrices over of size), find (the space of
invertible matrices over of size), such that

C1, C2, D1, D2 ∈ ℳn,n(𝔽q) 𝔽q n × n A, B ∈ GLn(𝔽q)
𝔽q n × n

 D1 = AC1B
 D2 = AC2B

Demo

In the assignment: • Write down the equations;
• Find a better modelisation for this problem;

Example.

28

Modelisation

A motivating example: a better idea for modelisation.

Given matrices (the space of matrices over of size), find (the space of
invertible matrices over of size), such that

C1, C2, D1, D2 ∈ ℳn,n(𝔽q) 𝔽q n × n A, B ∈ GLn(𝔽q)
𝔽q n × n

 A−1D1 = C1B
 A−1D2 = C2B

28

Modelisation

A motivating example: a better idea for modelisation.

Given matrices (the space of matrices over of size), find (the space of
invertible matrices over of size), such that

C1, C2, D1, D2 ∈ ℳn,n(𝔽q) 𝔽q n × n A, B ∈ GLn(𝔽q)
𝔽q n × n

 A−1D1 = C1B
 A−1D2 = C2B

Demo

28

Modelisation

A motivating example: a better idea for modelisation.

Given matrices (the space of matrices over of size), find (the space of
invertible matrices over of size), such that

C1, C2, D1, D2 ∈ ℳn,n(𝔽q) 𝔽q n × n A, B ∈ GLn(𝔽q)
𝔽q n × n

 A−1D1 = C1B
 A−1D2 = C2B

Demo

Results in a linear system with the same number of variables and equations.

28

Modelisation

A motivating example: a better idea for modelisation.

Given matrices (the space of matrices over of size), find (the space of
invertible matrices over of size), such that

C1, C2, D1, D2 ∈ ℳn,n(𝔽q) 𝔽q n × n A, B ∈ GLn(𝔽q)
𝔽q n × n

 A−1D1 = C1B
 A−1D2 = C2B

Demo

Results in a linear system with the same number of variables and equations.

If are all full rank, we should have a unique solution.C1, C2, D1, D2

We can easily recover from .A A−1

O V
Multivariate digital signature

schemes

30

Multivariate signatures

trapdoor
construction

Fiat-Shamir
construction

MQDSS
SOFIA

HFEv-

UOV

Examples. Examples.

31

The MQ problem (recall)

Given multivariate quadratic polynomials of
variables over a finite field , find a tuple in , such
that .

m f (1), …, f (m) n
𝔽q x = (x1, …, xn) 𝔽n

q
f (1)(x) = … = f (m)(x) = 0

The MQ problem

f (k)(x1, …, xn) = ∑
1≤i≤ j≤n

γ(k)
ij xixj + ∑

1≤i≤n

β(k)
i xi + α(k)

A quadratic system of equations in variables over a finite field : m n 𝔽q

31

The MQ problem (recall)

Given multivariate quadratic polynomials of
variables over a finite field , find a tuple in , such
that .

m f (1), …, f (m) n
𝔽q x = (x1, …, xn) 𝔽n

q
f (1)(x) = … = f (m)(x) = 0

The MQ problem

f (k)(x1, …, xn) = ∑
1≤i≤ j≤n

γ(k)
ij xixj + ∑

1≤i≤n

β(k)
i xi + α(k)

A quadratic system of equations in variables over a finite field : m n 𝔽q

Hard in general (should be hard for randomly generated instances).

31

The MQ problem (recall)

Given multivariate quadratic polynomials of
variables over a finite field , find a tuple in , such
that .

m f (1), …, f (m) n
𝔽q x = (x1, …, xn) 𝔽n

q
f (1)(x) = … = f (m)(x) = 0

The MQ problem

f (k)(x1, …, xn) = ∑
1≤i≤ j≤n

γ(k)
ij xixj + ∑

1≤i≤n

β(k)
i xi + α(k)

A quadratic system of equations in variables over a finite field : m n 𝔽q

Hard in general (should be hard for randomly generated instances).

Can become easy if we have some structure (a trapdoor).

32

The trapdoor construction

32

The trapdoor construction

• Central map:

• Two bijective linear (or affine) transformations:
 and

• Public map:

f : (x1, …, xn) ∈ 𝔽n
q → (f (1)(x1, …, xn), …, f (m)(x1, …, xn)) ∈ 𝔽m

q

S ∈ GLn(𝔽q) T ∈ GLm(𝔽q)

p = T ∘ f ∘ S

32

The trapdoor construction

• Central map:

• Two bijective linear (or affine) transformations:
 and

• Public map:

f : (x1, …, xn) ∈ 𝔽n
q → (f (1)(x1, …, xn), …, f (m)(x1, …, xn)) ∈ 𝔽m

q

S ∈ GLn(𝔽q) T ∈ GLm(𝔽q)

p = T ∘ f ∘ S

Main idea:

• The central map has a structure such that it is easy to find preimages: it is easy
(polynomial time) to compute for a target vector .

• The linear transformations hide the structure of the central map.

f −1(x) x

33

The trapdoor construction

w ∈ 𝔽m
q x ∈ 𝔽m

q y ∈ 𝔽n
q z ∈ 𝔽n

q

T−1 S−1f −1

p

General workflow

34

The trapdoor construction

A A

Signing Verification

Alice Bob

34

The trapdoor construction

A A

Signing Verification

Alice Bob

f, S, T p

34

The trapdoor construction

A A

Signing Verification

Alice Bob

m

f, S, T p

34

The trapdoor construction

A A

Signing Verification

Alice BobCompute:
•
•
•
•

w = H(m) ∈ 𝔽m
q

x = T−1(w) ∈ 𝔽m
q

y = f −1(x) ∈ 𝔽n
q

z = S−1(y) ∈ 𝔽n
q

m

f, S, T p

34

The trapdoor construction

A A

Signing Verification

Alice BobCompute:
•
•
•
•

w = H(m) ∈ 𝔽m
q

x = T−1(w) ∈ 𝔽m
q

y = f −1(x) ∈ 𝔽n
q

z = S−1(y) ∈ 𝔽n
q

zmm

f, S, T p

34

The trapdoor construction

A A

Signing Verification

Alice BobCompute:
•
•
•
•

w = H(m) ∈ 𝔽m
q

x = T−1(w) ∈ 𝔽m
q

y = f −1(x) ∈ 𝔽n
q

z = S−1(y) ∈ 𝔽n
q

Compute:
•
•

Check if

w = H(m) ∈ 𝔽m
q

w′ = p(z) ∈ 𝔽m
q

w′ = w

zmm

f, S, T p

34

The trapdoor construction

A A

Signing Verification

Alice BobCompute:
•
•
•
•

w = H(m) ∈ 𝔽m
q

x = T−1(w) ∈ 𝔽m
q

y = f −1(x) ∈ 𝔽n
q

z = S−1(y) ∈ 𝔽n
q

Compute:
•
•

Check if

w = H(m) ∈ 𝔽m
q

w′ = p(z) ∈ 𝔽m
q

w′ = w

mzmm

f, S, T p

O V
Unbalanced Oil and Vinegar

(UOV)
[Kipnis, Patarin, Goubin, 1999]

36

The UOV central map

Unbalanced Oil and Vinegar [Kipnis, Patarin, Goubin, ’99]

f (k)(x1, …, xn) = ∑
i∈V,j∈V

γ(k)
ij xixj + ∑

i∈V,j∈O

γ(k)
ij xixj +

n

∑
i=1

β(k)
i xi + α(k)

Index set of vinegar variables: V = {1,…, v} Index set of oil variables: O = {v + 1,…, n}

36

The UOV central map

Unbalanced Oil and Vinegar [Kipnis, Patarin, Goubin, ’99]

f (k)(x1, …, xn) = ∑
i∈V,j∈V

γ(k)
ij xixj + ∑

i∈V,j∈O

γ(k)
ij xixj +

n

∑
i=1

β(k)
i xi + α(k)

Index set of vinegar variables: V = {1,…, v} Index set of oil variables: O = {v + 1,…, n}

The central map is constructed in such a way that enumerating all of the vinegar variables leaves us with
a linear system in the oil variables (oil does not mix with oil).

36

The UOV central map

Unbalanced Oil and Vinegar [Kipnis, Patarin, Goubin, ’99]

f (k)(x1, …, xn) = ∑
i∈V,j∈V

γ(k)
ij xixj + ∑

i∈V,j∈O

γ(k)
ij xixj +

n

∑
i=1

β(k)
i xi + α(k)

Index set of vinegar variables: V = {1,…, v} Index set of oil variables: O = {v + 1,…, n}

The central map is constructed in such a way that enumerating all of the vinegar variables leaves us with
a linear system in the oil variables (oil does not mix with oil).
Everything is as described in the previous slides, except that we do not have a linear transformation on
the output: . T = I

37

Matrix representation of quadratic forms

Quadratic form: f(x) = ∑ γijxixj

so with , we get .x = (x1, …, xn) x⊤Fx

38

Matrix representation of bilinear forms

Bilinear form: f(x, y) = ∑ γijxiyj

so with and , we get .x = (x1, …, xn) y = (y1, …, yn) x⊤By

39

The UOV central map

Toy example: , v = 7 m = 4

F(1) F(2) F(3) F(4)

x1 x2 x7… x8 x11…
x1x2

x7

…

x8

x11

…

oil
variables

vinegar
variables

*Grayed areas represent the entries that are possibly nonzero; blank areas denote the zero entries;

40

UOV key generation
In matrix representation

.P(k) = S⊤F(k)S, for all k ∈ {1,…, m}

40

UOV key generation
In matrix representation

.P(k) = S⊤F(k)S, for all k ∈ {1,…, m}

Why ?

40

UOV key generation
In matrix representation

.P(k) = S⊤F(k)S, for all k ∈ {1,…, m}

Why ?

By definition, . p = f ∘ S

40

UOV key generation
In matrix representation

.P(k) = S⊤F(k)S, for all k ∈ {1,…, m}

Why ?

By definition, . p = f ∘ S

In matrix representation, we need:

x⊤P(k)x = (Sx)⊤F(k)(Sx)

40

UOV key generation
In matrix representation

.P(k) = S⊤F(k)S, for all k ∈ {1,…, m}

Why ?

By definition, . p = f ∘ S

In matrix representation, we need:

x⊤P(k)x = (Sx)⊤F(k)(Sx)

x⊤P(k)x = x⊤S⊤F(k)Sx

40

UOV key generation
In matrix representation

.P(k) = S⊤F(k)S, for all k ∈ {1,…, m}

Why ?

By definition, . p = f ∘ S

In matrix representation, we need:

x⊤P(k)x = (Sx)⊤F(k)(Sx)

x⊤P(k)x = x⊤S⊤F(k)Sx

41

UOV in the NIST competition

UOV
TUOV
PROV
MAYO
VOX
QR-UOV
SNOVA

42

UOV in the NIST competition

UOV
TUOV
PROV
MAYO
VOX
QR-UOV
SNOVA

Example.

MQ-Sign (in KpqC)

42

UOV in the NIST competition

UOV
TUOV
PROV
MAYO
VOX
QR-UOV
SNOVA

Example.

• We choose (slightly bigger than)

UOV-like schemes have:
• Big public keys
• Small signatures

n ∼ 2.5m

MQ-Sign (in KpqC)

O V
Attacks on UOV

44

Attacks on UOV

• Direct attack

• Reconciliation attack

• Kipnis-Shamir attack

• Intersection attack

O V
Direct attack

46

Direct attack

Try to forge a signature with only the knowledge of the public key.

46

Direct attack

Try to forge a signature with only the knowledge of the public key.

Constraint for modelisation

For a target , find such that .w z p(z) = w

46

Direct attack

Try to forge a signature with only the knowledge of the public key.

Constraint for modelisation

For a target , find such that .w z p(z) = w

Equations:

z⊤P(1)z = w1

z⊤P(2)z = w2

…
z⊤P(m)z = wm

 z⊤P(m)z = wm

 z⊤P(2)z = w1

 z⊤P(1)z = w1

47

Direct attack

Try to forge a signature with only the knowledge of the public key.

Constraint for modelisation

For a target , find such that .w z p(z) = w

Equations:

…

O V
Reconciliation attack

[Ding, Yang, Chen, Chen, Cheng, 2008]
(using description from [Samardjiska, Gligoroski, 2014])

49

The secret subspace O
The map with a UOV trapdoor vanishes on a linear subspace of :p O ⊂ 𝔽n

q dim(O) = m

.p(o) = 0, for all o ∈ O

49

The secret subspace O
The map with a UOV trapdoor vanishes on a linear subspace of :p O ⊂ 𝔽n

q dim(O) = m

.p(o) = 0, for all o ∈ O
Why ?

49

The secret subspace O
The map with a UOV trapdoor vanishes on a linear subspace of :p O ⊂ 𝔽n

q dim(O) = m

.p(o) = 0, for all o ∈ O
Why ?

Let be the -dimensional space that consists of all the vectors whose first entries (corresponding to the
vinegar variables) are zero: .

O′ ∈ 𝔽n
q m n − m

O′ = {v |vi = 0 for all i ≤ n − m}

= 0

49

The secret subspace O
The map with a UOV trapdoor vanishes on a linear subspace of :p O ⊂ 𝔽n

q dim(O) = m

.p(o) = 0, for all o ∈ O
Why ?

 vanishes on .f O′

Let be the -dimensional space that consists of all the vectors whose first entries (corresponding to the
vinegar variables) are zero: .

O′ ∈ 𝔽n
q m n − m

O′ = {v |vi = 0 for all i ≤ n − m}

= 0

49

The secret subspace O
The map with a UOV trapdoor vanishes on a linear subspace of :p O ⊂ 𝔽n

q dim(O) = m

.p(o) = 0, for all o ∈ O
Why ?

 vanishes on .f O′

Let .O = S−1(O′)

Let be the -dimensional space that consists of all the vectors whose first entries (corresponding to the
vinegar variables) are zero: .

O′ ∈ 𝔽n
q m n − m

O′ = {v |vi = 0 for all i ≤ n − m}

= 0

49

The secret subspace O
The map with a UOV trapdoor vanishes on a linear subspace of :p O ⊂ 𝔽n

q dim(O) = m

.p(o) = 0, for all o ∈ O
Why ?

 vanishes on .f O′

Let .O = S−1(O′)

 vanishes on .p O

Let be the -dimensional space that consists of all the vectors whose first entries (corresponding to the
vinegar variables) are zero: .

O′ ∈ 𝔽n
q m n − m

O′ = {v |vi = 0 for all i ≤ n − m}

= 0

50

Reconciliation attack

Find the secret oil subspace : find linearly independent vectors in .O m O

51

The polar form

The polar form of a quadratic map is the bilinear form such that p = (p(1), …, p(m)) p′ = (p′ (1), …, p′ (m))

p′ (k)(x, y) = p(k)(x + y) − p(k)(x) − p(k)(y), for all k ∈ {1,…, m} .

51

The polar form

The polar form of a quadratic map is the bilinear form such that p = (p(1), …, p(m)) p′ = (p′ (1), …, p′ (m))

p′ (k)(x, y) = p(k)(x + y) − p(k)(x) − p(k)(y), for all k ∈ {1,…, m} .

What does look like ?p′ (k)(x, y)

51

The polar form

The polar form of a quadratic map is the bilinear form such that p = (p(1), …, p(m)) p′ = (p′ (1), …, p′ (m))

p′ (k)(x, y) = p(k)(x + y) − p(k)(x) − p(k)(y), for all k ∈ {1,…, m} .

What does look like ?p′ (k)(x, y)

Let be the upper triangular representation of .P̃(k) p(k)

51

The polar form

The polar form of a quadratic map is the bilinear form such that p = (p(1), …, p(m)) p′ = (p′ (1), …, p′ (m))

p′ (k)(x, y) = p(k)(x + y) − p(k)(x) − p(k)(y), for all k ∈ {1,…, m} .

What does look like ?p′ (k)(x, y)

Let be the upper triangular representation of .P̃(k) p(k)

p′ (k)(x, y) = p(k)(x + y) − p(k)(x) − p(k)(y)

= (x + y)⊤P̃(k)(x + y) − x⊤P̃(k)x − y⊤P̃(k)y

= x⊤P̃(k)y + y⊤P̃(k)x

= x⊤(P̃(k) + P̃(k)⊤)y = x⊤B(k)y

51

The polar form

The polar form of a quadratic map is the bilinear form such that p = (p(1), …, p(m)) p′ = (p′ (1), …, p′ (m))

p′ (k)(x, y) = p(k)(x + y) − p(k)(x) − p(k)(y), for all k ∈ {1,…, m} .

What does look like ?p′ (k)(x, y)

Let be the upper triangular representation of .P̃(k) p(k)

p′ (k)(x, y) = p(k)(x + y) − p(k)(x) − p(k)(y)

= (x + y)⊤P̃(k)(x + y) − x⊤P̃(k)x − y⊤P̃(k)y

= x⊤P̃(k)y + y⊤P̃(k)x

= x⊤(P̃(k) + P̃(k)⊤)y = x⊤B(k)y

So, is bilinear and symmetric.p′

52

Reconciliation attack

Find the secret oil subspace : find linearly independent vectors in .O m O

52

Reconciliation attack

Constraint for modelisation
For any vector , we have that for all .
For any pair of vectors , we have that for all .

oi ∈ O o⊤
i P(k)oi = 0 k ∈ {1,…, m}

oi, oj ∈ O o⊤
i B(k)oj = 0 k ∈ {1,…, m}

Find the secret oil subspace : find linearly independent vectors in .O m O

52

Reconciliation attack

Constraint for modelisation
For any vector , we have that for all .
For any pair of vectors , we have that for all .

oi ∈ O o⊤
i P(k)oi = 0 k ∈ {1,…, m}

oi, oj ∈ O o⊤
i B(k)oj = 0 k ∈ {1,…, m}

Equations:

o⊤
i P(k)oi = 0, for k ∈ {1,…, m}

o⊤
i B(k)oj = 0, for k ∈ {1,…, m} and j < i

For doi ∈ {1,…, m}
oi = (o1, …, ov,0,…,1n−i+1,0,…,0)
Solve:

Find the secret oil subspace : find linearly independent vectors in .O m O

52

Reconciliation attack

Constraint for modelisation
For any vector , we have that for all .
For any pair of vectors , we have that for all .

oi ∈ O o⊤
i P(k)oi = 0 k ∈ {1,…, m}

oi, oj ∈ O o⊤
i B(k)oj = 0 k ∈ {1,…, m}

Equations:

o⊤
i P(k)oi = 0, for k ∈ {1,…, m}

o⊤
i B(k)oj = 0, for k ∈ {1,…, m} and j < i

For doi ∈ {1,…, m}
oi = (o1, …, ov,0,…,1n−i+1,0,…,0)
Solve:

In the first iteration, we have only quadratic equations, so this is the bottleneck. Linear constraints facilitate
the resolution of a system.

Find the secret oil subspace : find linearly independent vectors in .O m O

53

Reconciliation attack

Constraint for modelisation
For any vector , we have that for all .
For any pair of vectors , we have that for all .

oi ∈ O o⊤
i P(k)oi = 0 k ∈ {1,…, m}

oi, oj ∈ O o⊤
i B(k)oj = 0 k ∈ {1,…, m}

Equations:

o⊤
i P(k)oi = 0, for k ∈ {1,…, m}

o⊤
i B(k)oj = 0, for k ∈ {1,…, m} and j < i

For doi ∈ {1,…, m}
oi = (o1, …, ov,0,…,1n−i+1,0,…,0)
Solve:

In the first iteration, we have only quadratic equations, so this is the bottleneck. Linear constraints facilitate
the resolution of a system.

Find the secret oil subspace : find linearly independent vectors in .O m O

O V
Kipnis-Shamir attack

[Kipnis, Shamir, 1998]

55

The orthogonal complement of a subspace

Let . The orthogonal complement of is such thatV ⊂ 𝔽n
q V V⊥

.V⊥ = {ṽi ∈ 𝔽n
q |⟨vj, ṽi⟩ = 0, for all vj ∈ V}

If is -dimensional, then is -dimensional.V m V⊥ (n − m)

56

Kipnis-Shamir attack

Find the secret oil subspace . Works well for the balanced case () - the original proposal of OV.O n = 2m

56

Kipnis-Shamir attack

Find the secret oil subspace . Works well for the balanced case () - the original proposal of OV.O n = 2m

Constraint for modelisation

For each , we have that .B(k) B(k)O ⊂ O⊥

56

Kipnis-Shamir attack

Find the secret oil subspace . Works well for the balanced case () - the original proposal of OV.O n = 2m

Constraint for modelisation

For each , we have that .B(k) B(k)O ⊂ O⊥

⟨o2, B(k)o1⟩ = o⊤
2 B(k)o1

= p′ (k)(o1, o2)
= p(k)(o1 + o2) − p(k)(o1) − p(k)(o2) = 0

56

Kipnis-Shamir attack

Find the secret oil subspace . Works well for the balanced case () - the original proposal of OV.O n = 2m

Constraint for modelisation

For each , we have that .B(k) B(k)O ⊂ O⊥

⟨o2, B(k)o1⟩ = o⊤
2 B(k)o1

= p′ (k)(o1, o2)
= p(k)(o1 + o2) − p(k)(o1) − p(k)(o2) = 0

Since , we have that .dim(O⊥) = n − m = m B(k)O = O⊥

56

Kipnis-Shamir attack

Find the secret oil subspace . Works well for the balanced case () - the original proposal of OV.O n = 2m

Constraint for modelisation

For each , we have that .B(k) B(k)O ⊂ O⊥

⟨o2, B(k)o1⟩ = o⊤
2 B(k)o1

= p′ (k)(o1, o2)
= p(k)(o1 + o2) − p(k)(o1) − p(k)(o2) = 0

Since , we have that .dim(O⊥) = n − m = m B(k)O = O⊥

Since this is true for all , we have that .B(k) B(k1)O = O⊥ = B(k2)O

56

Kipnis-Shamir attack

Find the secret oil subspace . Works well for the balanced case () - the original proposal of OV.O n = 2m

Constraint for modelisation

For each , we have that .B(k) B(k)O ⊂ O⊥

⟨o2, B(k)o1⟩ = o⊤
2 B(k)o1

= p′ (k)(o1, o2)
= p(k)(o1 + o2) − p(k)(o1) − p(k)(o2) = 0

Hence, we have that , for all pairs .B(k1)−1B(k2)O = O B(k1), B(k2)

Since , we have that .dim(O⊥) = n − m = m B(k)O = O⊥

Since this is true for all , we have that .B(k) B(k1)O = O⊥ = B(k2)O

56

Kipnis-Shamir attack

Find the secret oil subspace . Works well for the balanced case () - the original proposal of OV.O n = 2m

Finding a common invariant subspace of a large number of linear maps is easy.

Constraint for modelisation

For each , we have that .B(k) B(k)O ⊂ O⊥

⟨o2, B(k)o1⟩ = o⊤
2 B(k)o1

= p′ (k)(o1, o2)
= p(k)(o1 + o2) − p(k)(o1) − p(k)(o2) = 0

Hence, we have that , for all pairs .B(k1)−1B(k2)O = O B(k1), B(k2)

Since , we have that .dim(O⊥) = n − m = m B(k)O = O⊥

Since this is true for all , we have that .B(k) B(k1)O = O⊥ = B(k2)O

56

Kipnis-Shamir attack

Find the secret oil subspace . Works well for the balanced case () - the original proposal of OV.O n = 2m

Finding a common invariant subspace of a large number of linear maps is easy.

Oil and Vinegar becomes Unbalanced Oil and Vinegar because of this attack.

Constraint for modelisation

For each , we have that .B(k) B(k)O ⊂ O⊥

⟨o2, B(k)o1⟩ = o⊤
2 B(k)o1

= p′ (k)(o1, o2)
= p(k)(o1 + o2) − p(k)(o1) − p(k)(o2) = 0

Hence, we have that , for all pairs .B(k1)−1B(k2)O = O B(k1), B(k2)

Since , we have that .dim(O⊥) = n − m = m B(k)O = O⊥

Since this is true for all , we have that .B(k) B(k1)O = O⊥ = B(k2)O

O V
Intersection attack

[Beullens, 2021]

58

Intersection attack

Find the secret oil subspace . Use the ideas of the Kipnis-Shamir attack, but for the unbalanced case ().O n > 2m

58

Intersection attack

Find the secret oil subspace . Use the ideas of the Kipnis-Shamir attack, but for the unbalanced case ().O n > 2m

Constraint for modelisation

Since , . We still have and , but they are not (necessarily) the same
subspace.

n > 2m dim(O⊥) > m B(k1)O ⊂ O⊥ B(k2)O ⊂ O⊥

58

Intersection attack

Find the secret oil subspace . Use the ideas of the Kipnis-Shamir attack, but for the unbalanced case ().O n > 2m

Constraint for modelisation

Since , . We still have and , but they are not (necessarily) the same
subspace.

n > 2m dim(O⊥) > m B(k1)O ⊂ O⊥ B(k2)O ⊂ O⊥

Idea: assuming that , try to find a vector in this intersection.B(k1)O ∩ B(k2)O ≠ ∅ x

58

Intersection attack

Find the secret oil subspace . Use the ideas of the Kipnis-Shamir attack, but for the unbalanced case ().O n > 2m

Constraint for modelisation

Since , . We still have and , but they are not (necessarily) the same
subspace.

n > 2m dim(O⊥) > m B(k1)O ⊂ O⊥ B(k2)O ⊂ O⊥

If is in the intersection , then both and are in .x B(k1)O ∩ B(k2)O B(k1)−1x B(k2)−1x O
Idea: assuming that , try to find a vector in this intersection.B(k1)O ∩ B(k2)O ≠ ∅ x

58

Intersection attack

Find the secret oil subspace . Use the ideas of the Kipnis-Shamir attack, but for the unbalanced case ().O n > 2m

Constraint for modelisation

Since , . We still have and , but they are not (necessarily) the same
subspace.

n > 2m dim(O⊥) > m B(k1)O ⊂ O⊥ B(k2)O ⊂ O⊥

Equations:

p(B(k1)−1x) = 0
p(B(k2)−1x) = 0
p′ (B(k1)−1x, B(k2)−1x) = 0

If is in the intersection , then both and are in .x B(k1)O ∩ B(k2)O B(k1)−1x B(k2)−1x O
Idea: assuming that , try to find a vector in this intersection.B(k1)O ∩ B(k2)O ≠ ∅ x

58

Intersection attack

Find the secret oil subspace . Use the ideas of the Kipnis-Shamir attack, but for the unbalanced case ().O n > 2m

Constraint for modelisation

Since , . We still have and , but they are not (necessarily) the same
subspace.

n > 2m dim(O⊥) > m B(k1)O ⊂ O⊥ B(k2)O ⊂ O⊥

Equations:

p(B(k1)−1x) = 0
p(B(k2)−1x) = 0
p′ (B(k1)−1x, B(k2)−1x) = 0

The attack can be generalised to find a vector in the intersection of more than two subspaces.

If is in the intersection , then both and are in .x B(k1)O ∩ B(k2)O B(k1)−1x B(k2)−1x O
Idea: assuming that , try to find a vector in this intersection.B(k1)O ∩ B(k2)O ≠ ∅ x

59

Recap

‣ The MQ problem is (usually) hard.

‣ We have a variety of solvers for (over)determined systems.

‣ Modelisation can be crucial to how efficient an attack is.

‣ The MQ problem can be easy for some structured systems. We use this to build trapdoors in crypto.

‣ We saw three different ways to model the recovery of the UOV trapdoor.

59

Recap

‣ The MQ problem is (usually) hard.

‣ We have a variety of solvers for (over)determined systems.

‣ Modelisation can be crucial to how efficient an attack is.

‣ The MQ problem can be easy for some structured systems. We use this to build trapdoors in crypto.

‣ We saw three different ways to model the recovery of the UOV trapdoor.

Credits: created with , and Manim.

Resources at https://mtrimoska.com/QSI-multivariate/

