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Algebraic cryptanalysis

k A type of cryptanalytic methods where the problem of finding the secret key
(or any attack goal) is reduced to the problem of finding a solution to a

nonlinear multivariate polynomial system of equations.
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The MQ problem

Given m multivariate quadratic polynomials fi, ..., f,, of n variables
over a finite field F , find a tuple X = (xy,...,x,) in [}, such that

[ = ... = f,(x) = 0.
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Exhaustive Search

h Worst-case complexity: O(2")
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Fast Exhaustive Search

* The ibFES solver

Gray code

® An ordering of the binary system where two successive values differ in only one bit.

Exam[pi.@.. n=4
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Fast Exhaustive Search
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[Linearisation

Linear systems are easy to solve, nonlinear systems are hard.

L-V Linearisation: for each nonlinear monomial, replace all of its occurrences by a new variable.
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[Linearisation

‘ Linearisation adds solutions: a random quadratic system of m equations in n variables, when n = m, is

expected to have one solution (probability is ~ — for systems over [ ). The corresponding linearised
q

n+ 1
system has a solution space of dimension ( ) — m.

n
T— <2> quadratic plus n linear monomials



[Linearisation

‘ Linearisation adds solutions: a random quadratic system of m equations in n variables, when n = m, is

expected to have one solution (probability is ~ — for systems over [ ). The corresponding linearised
q

n+ 1
system has a solution space of dimension ( ) — m.

n
T— <2> quadratic plus n linear monomials

Loss of information: e.g. assignment x; = 1; x, = 0; y, = 1, is part of a valid solution to the linearised
system, but x;x, # y;.
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Monomials

Ix1x3 +X2X4+X1+XB +X4=O
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Partial assignment and conflicts

1 -0+ 1  x3+x3-T4+23=0

0 -3+ 0 -x4+1+0+1=0
1-0+0 - 23+0 s+ 1 +x4=0
1 x4+ 0 x3+ 0 +x3+24 =0



Simple algorithm

— Partial assignment
— Gaussian elimination

1 -0+ 1 -x3+x3-x4+x3=0
0 -xz3+ 0 -24+1+0+1=0
1 24+ 0 23+ 0 +tx3+x4=0



Simple algorithm

Guess sufficiently many variables so that the remaining
polynomial system can be solved by linearization.
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Grobner basis algorithms (intuition) vy s by 0

*We are essentially describing the XL algorithm. XXy + XXy + X+ x5+ 1 =0

L XX F XX XX+ +x+1 =0

D=4 :.X1X2+X2X3+X1X4+X3:O

:X1X3 +X1X4+X3X4+XI+X2+X3 +X4=O

X1 X X1 X3 X1Xq  X| XoXz XpXy Xy XXy X3 Xy 1 X1XpX3 X1 XXy XXzXy XoXa3Xy X1XpXzXy

fil O 1 0 1 0 1 0 0 1 1 0

f» 1 O 0 1 1 1 0 1 1 0 1 0

L | O 0 0 1 0 1 0 1 1 0 1
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XL/ Grobner basis algorithms: complexity

n+D,,,—1 ’
O | mD,,,
Dreg

D, degree of regularity

reg-

(1 — 5™
(1 =1

L.y the power of the first non-positive coefficient in the expansion of
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Algebraic cryptanalysis: try it yourself !

Efxampt@..

Given matrices C,, C,, Dy, D, € 4, ,(F ) (the space of matrices over [, of size n X n), find A, B € GL,(F) (the space of

invertible matrices over [F_ of size n X n), such that

— Demo

— In the assignment: e Write down the equations;

e Find a better modelisation for this problem;
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Modelisation

h A motivating example: a better idea for modelisation.

Given matrices C, C,, D, D, € 4, ,(F ) (the space of matrices over F_ of size n X n), find A, B € GL,(F ) (the space of

invertible matrices over [F_ of size n X n), such that

A-'D, =CB
A~'D,=C,B

— Demo
— Results in a linear system with the same number of variables and equations.

— 1f C,, C,, D, D, are all full rank, we should have a unique solution.

— We can easily recover A from A1
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The MQ problem (recall)

A quadratic system of m equations in n variables over a finite field [, :

k k k k
O, ..., x) = Z 7’15- )xixj T Z ﬂi( %+ a®

1<i<j<n 1<isn

Given m multivariate quadratic polynomials fV, ..., of n
variables over a finite field F, find a tuple x = (x}, ..., x,) in [}, such

that FO(x) = ... = F™(x) = 0.

— Hard in general (should be hard for randomly generated instances).

— (Can become easy if we have some structure (a trapdoor).
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e Central map:
(g, ..x) € [F?] — (f(l)(xl, ' ...,f(m)(xl, ...,xn)) - [FZ”‘

e Two bijective linear (or affine) transformations:

S € GL,(F)and T € GL,(F)

* Public map:
p = T ofo S



The trapdoor construction

e Central map:
(g, ..x) € [F?] — (f(l)(xl, ' ...,f(m)(xl, ...,xn)) - [FZ”‘

e Two bijective linear (or affine) transformations:

S € GL,(F)and T € GL,(F)

* Public map:
p = T ofo S

k Main idea:

e The central map has a structure such that it is easy to find preimages: it is easy
(polynomial time) to compute f~1(x) for a target vector x.

|'_

e The linear transformations hide the structure of the central map.




The trapdoor construction

General workflow
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The trapdoor construction

e W= H(m) € [FZL
o x=T'(w) eF)
oy=f'(x)€F]
ez=S'(y)eF]

Compute:
e W= H(m) € [FZL
o W =p(z) e b

Checkif w =w
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The UOV central map

k Unbalanced QOil and Vinegar [Kipnis, Patarin, Goubin, "99]

k
f(k)(xl, ceos xn) — Z y;} )xl'Xj +

n
(k) (k) (k)
2 Vi X+ Zﬁi X, + o
i=1

icV,jeV icV,jieo

V

v

Index set of vinegar variables: V = {1,..., v}

Index set of oil variables: O = {v+ 1,...,n}
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The UOV central map

k Unbalanced QOil and Vinegar [Kipnis, Patarin, Goubin, "99]

n
k _ k k k k
=1

icV,jieV icV.ico
|

v

Index set of vinegar variables: V = {1,..., v} Index set of oil variables: O = {v+1,...,n}

— The central map is constructed in such a way that enumerating all of the vinegar variables leaves us with
a linear system in the oil variables (oil does not mix with oil).

— Everything is as described in the previous slides, except that we do not have a linear transformation on

the output: T = L.



Matrix representation of quadratic forms

Quadratic form: f(X) = Z ViiXiX;

sowithx = (x;, ..., x ), we get x'Fx.

71,2

Y1.3

V1.4

V2.2
V3.2

Y2,3

V2.4

V3.3

V3.4

V4,2

¥4,3

V4.4




Matrix representation of bilinear forms

Bilinear form: f(Xx,y) = Z ViiXiV;

SO WlthX - (xl, cees

x)andy = (y,...,y,), we get X' By.

71,1

V1,2

¥1.3

V2.1

V2,2

2.3

V3.1

V4.1

Y3,2

V4,2

¥3.3

Y4.3

Y1

Y2

Y3

Y4




The UOV central map

Toy example: v="7,m =4

vinegar oil
variables variables
| | |
x1 xz o o o x7 .XS o o o x11

F( F(2) FO)

*Grayed areas represent the entries that are possibly nonzero; blank areas denote the zero entries;
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Why ?
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UOV key generation

In matrix representation

k} PO = STF®S forallk € {1,....m).

Why ?

L-V By definition, p = f o S.

In matrix representation, we need:

x "PWx = (Sx)"F®(Sx)
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UOV in the NIST competition

Uuov E-:xa\my{e‘

TUOV NIST m T, |pk| sk lcpk|  |sig+salt]

SL (bytes) (bytes) (bytes) (bytes)

P I : O ‘ / ov-Ip 1 112 44  Fose 278432 237 896 43 576 128
ov-Is 1 160 64 Fi6 412160 348 704 66 576 96

ov-III 3 184 72 Fose 1225440 1044320 189232 200

5! 244 96 Fose 2869440 2436704 446 992 260

MAYO aa

VOX

QOR-UOV

SNOVA

MQ-Sign (in KpqC)



UOV in the NIST competition

Uuov Elxa\myteq

TUOV NIST m T, |pk| sk lcpk|  |sig+salt]

SL (bytes) (bytes) (bytes) (bytes)

PROV ov-Ip 1 112 44 o5 278432 237896 43 576 128
ov-Is 1 160 64 Fi6 412160 348 704 66 576 96

ov-ITI 3 184 72 o5 1225440 1044320 189 232 200

D 244 96  [Fos6 2869440 2436704 446 992 260

MAYO aa

VOX
QR—U OV e We choose n ~ 2.5m (slightly bigger than)
UOV-like schemes have:

SNOVA e Big public keys
MQ'Sl gn (11'1 KP qC) e Small signatures



ks on




Attacks on UOV

e Direct attack
e Reconciliation attack
e Kipnis-Shamir attack

e Intersection attack
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Direct attack

h Try to forge a signature with only the knowledge of the public key.

- - - - Constraint for modelisation - - ----- - - - - - - - - - - - - - - - - = - - = - & & — . ————— - - — — —

For a target w, find z such that p(z) = w.

— LEquations:
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— 5o, p'is bilinear and symmetric.
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The orthogonal complement of a subspace

Let V C [}. The orthogonal complement of V'is V+ such that

1 rg n S\ —
V== {v,eF (v, V) =0, forallv;, € V}.

If V is m-dimensional, then V+ is (n — m)-dimensional.



Kipnis-Shamir attack

h Find the secret oil subspace O. Works well for the balanced case (n = 2m) - the original proposal of OV.



Kipnis-Shamir attack

k Find the secret oil subspace O. Works well for the balanced case (n = 2m) - the original proposal of OV.

- - - - (Constraint for modelisation - - ------ - - - - - - - - - - - - - - - = = = = - - & — . — ——————— - - — — —

For each B®, we have that BP0 c O+



Kipnis-Shamir attack

h Find the secret oil subspace O. Works well for the balanced case (n = 2m) - the original proposal of OV.

- - - - (Constraint for modelisation - - ------ - - - - - - - - - - - - - - - - = = - - - - & - —— - - — - — — —

For each B®, we have that BP0 c O+

(0,,B¥0,) = 0)BWo,

— P,(k)(ola 02)
= P(k)(01 + 0,) _P(k)(ol) —P(k)(Oz) =0



Kipnis-Shamir attack

h Find the secret oil subspace O. Works well for the balanced case (n = 2m) - the original proposal of OV.

- - - - (Constraint for modelisation - - ------ - - - - - - - - - - - - - - - - = = - - - - & - —— - - — - — — —

For each B®, we have that BP0 c O+
Since dim(0~1) = n — m = m, we have that B0 = O+

(0,,B¥0,) = 0)BWo,

— P,(k)(ola 02)
= P(k)(01 + 0,) _P(k)(ol) —P(k)(Oz) =0



Kipnis-Shamir attack

h Find the secret oil subspace O. Works well for the balanced case (n = 2m) - the original proposal of OV.

- - - - (Constraint for modelisation - - ------ - - - - - - - - - - - - - - - - = = - - - - & - —— - - — - — — —

For each B®, we have that BP0 c O+
Since dim(0~1) = n — m = m, we have that B0 = O+

Since this is true for all B®, we have that B¥0 = 0+ = B&)Q.

(0,,B¥0,) = 0)BWo,

— P,(k)(ola 02)
= P(k)(01 + 0,) _P(k)(ol) —P(k)(Oz) =0



Kipnis-Shamir attack

h Find the secret oil subspace O. Works well for the balanced case (n = 2m) - the original proposal of OV.

- - - - (Constraint for modelisation - - ------ - - - - - - - - - - - - - - - - = = - - - - & - —— - - — - — — —

For each B®, we have that BP0 c O+
Since dim(0~1) = n — m = m, we have that B0 = O+

Since this is true for all B®, we have that B¥0 = 0+ = B&)Q.
Hence, we have that B®)"!B*&)0 = 0, for all pairs B*), B*),

(0,,B¥0,) = 0)BWo,

— P,(k)(ola 02)
= P(k)(01 + 0,) _P(k)(ol) —P(k)(Oz) =0



Kipnis-Shamir attack

h Find the secret oil subspace O. Works well for the balanced case (n = 2m) - the original proposal of OV.

- - - - (Constraint for modelisation - - ------ - - - - - - - - - - - - - - - - = = - - - - & - —— - - — - — — —

|
i For each B®, we have that BP0 c O+

' Since dim(O1) = n — m = m, we have that BP0 = 0.

. Since this is true for all B®, we have that B0 = 0+ = B&)(.
. Hence, we have that B®~1B®)0 = 0, for all pairs B, B*).

(0,,B¥0,) = 0)BWo,

— P,(k)(ola 02)
= P(k)(01 + 0,) _P(k)(ol) —P(k)(Oz) =0

— Finding a common invariant subspace of a large number of linear maps is easy.



Kipnis-Shamir attack

h Find the secret oil subspace O. Works well for the balanced case (n = 2m) - the original proposal of OV.

- - - - (Constraint for modelisation - - ------ - - - - - - - - - - - - - - - - = = - - - - & - —— - - — - — — —

|
i For each B®, we have that BP0 c O+

' Since dim(O1) = n — m = m, we have that BP0 = 0.

. Since this is true for all B®, we have that B0 = 0+ = B&)(.
. Hence, we have that B®~1B®)0 = 0, for all pairs B, B*).

(0,,B¥0,) = 0)BWo,

— P,(k)(ola 02)
= P(k)(01 + 0,) _P(k)(ol) —P(k)(Oz) =0

— Finding a common invariant subspace of a large number of linear maps is easy.

— QOil and Vinegar becomes Unbalanced Oil and Vinegar because of this attack.
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— The attack can be generalised to find a vector in the intersection of more than two subspaces.
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h Resources at https:/ / mtrimoska.com /QSI-multivariate /

Credits: created with @, and Manim.



