Multivariate cryptography

Monika Trimoska

PQC Spring School
Porto, March 152024

TU/e

Algebraic cryptanalysis

A type of cryptanalytic methods where the problem of finding the secret key (or any attack goal) is reduced to the problem of finding a solution to a nonlinear multivariate polynomial system of equations.

Algebraic cryptanalysis

algebraic modeling

$$
\begin{gathered}
\text { Tolmosikg } \\
\text { forgery } \\
\Omega 3
\end{gathered}
$$

Algebraic cryptanalysis

Algebraic cryptanalysis

algebraic modeling

$$
\begin{gathered}
\text { Tolmosikg } \\
\text { forgery } \\
\Omega 3
\end{gathered}
$$

Algebraic cryptanalysis

The MQ problem

The MQ problem

Given m multivariate quadratic polynomials f_{1}, \ldots, f_{m} of n variables over a finite field \mathbb{F}_{q}, find a tuple $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ in \mathbb{F}_{q}^{n}, such that $f_{1}(\mathbf{x})=\ldots=f_{m}(\mathbf{x})=0$.

Example. $\quad f_{1}: x_{1} x_{3}+x_{2} x_{4}+x_{1}+x_{3}+x_{4}=0$

$$
\begin{aligned}
& f_{2}: x_{2} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{4}=0 \\
& f_{3}: x_{2} x_{4}+x_{3} x_{4}+x_{1}+x_{3}+1=0 \\
& f_{4}: x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{3}+x_{4}+1=0 \\
& f_{5}: x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{4}+x_{3}=0 \\
& f_{6}: x_{1} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{3}+x_{4}=0
\end{aligned}
$$

Overview of solvers

(Fast) Exhaustive Search

[Bouillaguet, Chen, Cheng, Chou, Niederhagen, Shamir, Yang, 2010]

Exhaustive Search

$$
\begin{aligned}
& x_{1} \cdot x_{2}+x_{1} \cdot x_{3}+x_{3} \cdot x_{4}+x_{3}=0 \\
& x_{2} \cdot x_{3}+x_{2} \cdot x_{4}+x_{1}+x_{2}+1=0 \\
& x_{1} \cdot x_{2}+x_{2} \cdot x_{3}+x_{2} \cdot x_{4}+x_{1}+x_{4}=0 \\
& x_{1} \cdot x_{4}+x_{2} \cdot x_{3}+x_{2}+x_{3}+x_{4}=0
\end{aligned}
$$

Binary search tree

Exhaustive Search

Worst-case complexity: $\mathcal{O}\left(2^{n}\right)$

$$
\begin{aligned}
& x_{1} \cdot x_{2}+x_{1} \cdot x_{3}+x_{3} \cdot x_{4}+x_{3}=0 \\
& x_{2} \cdot x_{3}+x_{2} \cdot x_{4}+x_{1}+x_{2}+1=0 \\
& x_{1} \cdot x_{2}+x_{2} \cdot x_{3}+x_{2} \cdot x_{4}+x_{1}+x_{4}=0 \\
& x_{1} \cdot x_{4}+x_{2} \cdot x_{3}+x_{2}+x_{3}+x_{4}=0
\end{aligned}
$$

Binary search tree

Exhaustive Search

$$
\begin{aligned}
& x_{1} \cdot x_{2}+x_{1} \cdot x_{3}+x_{3} \cdot x_{4}+x_{3}=0 \\
& x_{2} \cdot x_{3}+x_{2} \cdot x_{4}+x_{1}+x_{2}+1=0 \\
& x_{1} \cdot x_{2}+x_{2} \cdot x_{3}+x_{2} \cdot x_{4}+x_{1}+x_{4}=0 \\
& x_{1} \cdot x_{4}+x_{2} \cdot x_{3}+x_{2}+x_{3}+x_{4}=0
\end{aligned}
$$

Binary search tree

Exhaustive Search

$$
\begin{aligned}
& 1 \cdot 0+1 \cdot 0+0 \cdot 1+0=0 \\
& 0 \cdot 0+0 \cdot 1+1+0+1=0 \\
& 1 \cdot 0+0 \cdot 0+0 \cdot 1+1+1=0 \\
& 1 \cdot 1+0 \cdot 0+0+0+1=0
\end{aligned}
$$

Binary search tree

Exhaustive Search

Worst-case complexity: $\mathcal{O}\left(2^{n}\right)$

$$
\begin{aligned}
& 1 \cdot 0+1 \cdot 0+0 \cdot 1+0=0 \\
& 0 \cdot 0+0 \cdot 1+1+0+1=0 \\
& 1 \cdot 0+0 \cdot 0+0 \cdot 1+1+1=0 \\
& 1 \cdot 1+0 \cdot 0+0+0+1=0
\end{aligned}
$$

Binary search tree

Fast Exhaustive Search

* The libFES solver

Gray code

- An ordering of the binary system where two successive values differ in only one bit.

Example. $n=4$

0000	1100
0001	1101
0011	1111
0010	1110
0110	1010
0111	1011
0101	1001
0100	1000

Fast Exhaustive Search

Gray code
00001100
00011101
00111111
00101110
01101010
01111011
01011001
01001000

$$
\begin{aligned}
& 1 \cdot 0+1 \cdot 0+0 \cdot 1+0=0 \\
& 0 \cdot 0+0 \cdot 1+1+0+1=0 \\
& 1 \cdot 0+0 \cdot 0+0 \cdot 1+1+1=0 \\
& 1 \cdot 1+0 \cdot 0+0+0+1=0
\end{aligned}
$$

Fast Exhaustive Search

Gray code	
0000	1100
0001	1101
0011	1111
0010	1110
0110	1010
0111	1011
0101	1001
0100	1000

$$
\begin{aligned}
& 1 \cdot 0+1 \cdot 0+0 \cdot 1+0=0 \\
& 0 \cdot 0+0 \cdot 1+1+0+1=0 \\
& 1 \cdot 0+0 \cdot 0+0 \cdot 1+1+1=0 \\
& 1 \cdot 1+0 \cdot 0+0+0+1=0
\end{aligned}
$$

Macaulay matrix

Linearisation

Linear systems are easy to solve, nonlinear systems are hard.

Linearisation

Linear systems are easy to solve, nonlinear systems are hard.

Linearisation: for each nonlinear monomial, replace all of its occurrences by a new variable.

Linearisation

Linear systems are easy to solve, nonlinear systems are hard.

Linearisation: for each nonlinear monomial, replace all of its occurrences by a new variable.

Example.

$$
\begin{array}{ll}
f_{1}: x_{1} x_{3}+x_{2} x_{4}+x_{1}+x_{3}+x_{4}=0 \\
f_{2}: x_{2} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{4}=0 \\
f_{3}: x_{2} x_{4}+x_{3} x_{4}+x_{1}+x_{3}+1=0 \\
f_{4}: x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{3}+x_{4}+1=0 \\
f_{5}: x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{4}+x_{3}=0 & \longrightarrow
\end{array} \begin{aligned}
& f_{1}: y_{2}+y_{5}+x_{1}+x_{3}+x_{4}=0 \\
& f_{2}: y_{4}+y_{3}+y_{6}+x_{1}+x_{2}+x_{4}=0 \\
& f_{1} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{3}+x_{4}=0
\end{aligned} \quad \begin{aligned}
& f_{3}: y_{5}+y_{6}+x_{1}+x_{3}+1=0 \\
& f_{4}: y_{1}+y_{2}+y_{4}+x_{3}+x_{4}+1=0 \\
& f_{5}: y_{1}+y_{4}+y_{3}+x_{3}=0 \\
& f_{6}: y_{2}+y_{3}+y_{6}+x_{1}+x_{2}+x_{3}+x_{4}=0
\end{aligned}
$$

Linearisation

Linear systems are easy to solve, nonlinear systems are hard.

Linearisation: for each nonlinear monomial, replace all of its occurrences by a new variable.

Example.

$$
\begin{array}{ll}
f_{1}: x_{1} x_{3}+x_{2} x_{4}+x_{1}+x_{3}+x_{4}=0 & f_{1}: y_{2}+y_{5}+x_{1}+x_{3}+x_{4}=0 \\
f_{2}: x_{2} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{4}=0 & \\
f_{2}: y_{4}+y_{3}+y_{6}+x_{1}+x_{2}+x_{4}=0 \\
f_{3}: x_{2} x_{4}+x_{3} x_{4}+x_{1}+x_{3}+1=0 & f_{3}: y_{5}+y_{6}+x_{1}+x_{3}+1=0 \\
f_{4}: x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{3}+x_{4}+1=0 & f_{4}: y_{1}+y_{2}+y_{4}+x_{3}+x_{4}+1=0 \\
f_{5}:: x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{4}+x_{3}=0 & f_{5}: y_{1}+y_{4}+y_{3}+x_{3}=0 \\
f_{6}: x_{1} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{3}+x_{4}=0 & f_{6}: y_{2}+y_{3}+y_{6}+x_{1}+x_{2}+x_{3}+x_{4}=0
\end{array}
$$

Linearisation

Linearisation adds solutions: a random quadratic system of m equations in n variables, when $n=m$, is expected to have one solution (probability is $\sim \frac{1}{q}$ for systems over \mathbb{F}_{q}). The corresponding linearised system has a solution space of dimension $\binom{n+1^{q}}{2}^{2}-m$.
$\uparrow\binom{n}{2}$ quadratic plus n linear monomials

Linearisation

Linearisation adds solutions: a random quadratic system of m equations in n variables, when $n=m$, is expected to have one solution (probability is $\sim \frac{1}{q}$ for systems over \mathbb{F}_{q}). The corresponding linearised system has a solution space of dimension $\binom{n+1}{2}^{q}-m$.
$\uparrow\binom{n}{2}$ quadratic plus n linear monomials

Loss of information: e.g. assignment $x_{1}=1 ; x_{2}=0 ; y_{1}=1$; is part of a valid solution to the linearised system, but $x_{1} x_{2} \neq y_{1}$.

Macaulay matrix

$$
\begin{aligned}
& f_{1}: x_{1} x_{3}+x_{2} x_{4}+x_{1}+x_{3}+x_{4}=0 \\
& f_{2}: x_{2} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{4}=0 \\
& f_{3}: x_{2} x_{4}+x_{3} x_{4}+x_{1}+x_{3}+1=0 \\
& f_{4}: x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{3}+x_{4}+1=0 \\
& f_{5}: x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{4}+x_{3}=0 \\
& f_{6}: x_{1} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{3}+x_{4}=0
\end{aligned}
$$

Macaulay matrix

Monomials

Equations

$$
\begin{aligned}
& f_{1}: x_{1} x_{3}+x_{2} x_{4}+x_{1}+x_{3}+x_{4}=0 \\
& f_{2}: x_{2} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{4}=0 \\
& f_{3}: x_{2} x_{4}+x_{3} x_{4}+x_{1}+x_{3}+1=0 \\
& f_{4}: x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{3}+x_{4}+1=0 \\
& f_{5}: x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{4}+x_{3}=0 \\
& f_{6}: x_{1} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{3}+x_{4}=0
\end{aligned}
$$

CryptoMiniSat [Soos, Nohl, Castelluccia, 2009], WDSat [T., Dequen, Ionica, 2020]

Simple algorithm

[Bouillaguet, Delaplace, T., 2021]

Partial assignment and conflicts

$$
\begin{aligned}
& 1 \cdot 0+1 \cdot x_{3}+x_{3} \cdot x_{4}+x_{3}=0 \\
& 0 \cdot x_{3}+0 \cdot x_{4}+1+0+1=0 \\
& 1 \cdot 0+0 \cdot x_{3}+0 \cdot x_{4}+1+x_{4}=0 \\
& 1 \cdot x_{4}+0 \cdot x_{3}+0+x_{3}+x_{4}=0
\end{aligned}
$$

Simple algorithm

\longrightarrow Partial assignment

\longrightarrow Gaussian elimination

$$
\begin{aligned}
& 1 \cdot 0+1 \cdot x_{3}+x_{3} \cdot x_{4}+x_{3}=0 \\
& 0 \cdot x_{3}+0 \cdot x_{4}+1+0+1=0 \\
& 1 \cdot 0+0 \cdot x_{3}+0 \cdot x_{4}+1+x_{4}=0 \\
& 1 \cdot x_{4}+0 \cdot x_{3}+0+x_{3}+x_{4}=0
\end{aligned}
$$

Simple algorithm

Guess sufficiently many variables so that the remaining polynomial system can be solved by linearization.

Overview of solvers

Gröbner basis algorithms

[Buchberger, 1965]
[Lazard, 1983]
F_{4} / F_{5} [Faugère, 1999/2002]
(XL [Courtois, Klimov, Patarin, Shamir, 2000])

Gröbner basis algorithms (intuition)

*We are essentially describing the XL algorithm.

Gröbner basis algorithms (intuition)

*We are essentially describing the XL algorithm.

Gröbner basis algorithms (intuition)

*We are essentially describing the XL algorithm.

$$
\begin{aligned}
& f_{1}: x_{1} x_{3}+x_{2} x_{4}+x_{1}+x_{3}+x_{4}=0 \\
& f_{2}: x_{2} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{4}=0 \\
& f_{3}: x_{2} x_{4}+x_{3} x_{4}+x_{1}+x_{3}+1=0 \\
& f_{4}: x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{3}+x_{4}+1=0 \\
& f_{5}: x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{4}+x_{3}=0 \\
& f_{6}: x_{1} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{3}+x_{4}=0
\end{aligned}
$$

Gröbner basis algorithms (intuition)

*We are essentially describing the XL algorithm.
$D=3$

$$
\begin{aligned}
& f_{1}: x_{1} x_{3}+x_{2} x_{4}+x_{1}+x_{3}+x_{4}=0 \\
& f_{2}: x_{2} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{4}=0 \\
& f_{3}: x_{2} x_{4}+x_{3} x_{4}+x_{1}+x_{3}+1=0 \\
& f_{4}: x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{3}+x_{4}+1=0 \\
& f_{5}: x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{4}+x_{3}=0 \\
& f_{6}: x_{1} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{3}+x_{4}=0
\end{aligned}
$$

Gröbner basis algorithms (intuition)

*We are essentially describing the XL algorithm.
$D=4$

$$
\begin{aligned}
& f_{1}: x_{1} x_{3}+x_{2} x_{4}+x_{1}+x_{3}+x_{4}=0 \\
& f_{2}: x_{2} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{4}=0 \\
& f_{3}: x_{2} x_{4}+x_{3} x_{4}+x_{1}+x_{3}+1=0 \\
& f_{4}: x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{3}+x_{4}+1=0 \\
& f_{5}: x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{4}+x_{3}=0 \\
& f_{6}: x_{1} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{3}+x_{4}=0
\end{aligned}
$$

XL/Gröbner basis algorithms: complexity

XL/Gröbner basis algorithms: complexity

$$
\mathcal{O}\left(m D_{r e g}\binom{n+D_{r e g}-1}{D_{r e g}}^{\omega}\right)
$$

XL/ Gröbner basis algorithms: complexity

$$
\mathcal{O}\left(m D_{\text {reg }}\binom{n+D_{\text {reg }}-1}{D_{\text {reg }}}^{\omega}\right)
$$

$D_{\text {reg }}$: degree of regularity
\longrightarrow the power of the first non-positive coefficient in the expansion of $\frac{\left(1-t^{2}\right)^{m}}{(1-t)^{n}}$

Overview of solvers

Algebraic cryptanalysis: try it yourself !

Example.

Given matrices $\mathbf{C}_{1}, \mathbf{C}_{2}, \mathbf{D}_{1}, \mathbf{D}_{2} \in \mathscr{M}_{n, n}\left(\mathbb{F}_{q}\right)$ (the space of matrices over \mathbb{F}_{q} of size $n \times n$), find $\mathbf{A}, \mathbf{B} \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ (the space of invertible matrices over \mathbb{F}_{q} of size $n \times n$), such that

$$
\begin{aligned}
& \mathbf{D}_{1}=\mathbf{A C} C_{1} \mathbf{B} \\
& \mathbf{D}_{2}=\mathbf{A C} C_{2} \mathbf{B}
\end{aligned}
$$

Algebraic cryptanalysis: try it yourself !

Example.

Given matrices $\mathbf{C}_{1}, \mathbf{C}_{2}, \mathbf{D}_{1}, \mathbf{D}_{2} \in \mathscr{M}_{n, n}\left(\mathbb{F}_{q}\right)$ (the space of matrices over \mathbb{F}_{q} of size $n \times n$), find $\mathbf{A}, \mathbf{B} \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ (the space of invertible matrices over \mathbb{F}_{q} of size $n \times n$), such that

$$
\begin{aligned}
& \mathbf{D}_{1}=\mathbf{A} \mathbf{C}_{1} \mathbf{B} \\
& \mathbf{D}_{2}=\mathbf{A C _ { 2 }} \mathbf{B}
\end{aligned}
$$

Algebraic cryptanalysis: try it yourself !

Example.

Given matrices $\mathbf{C}_{1}, \mathbf{C}_{2}, \mathbf{D}_{1}, \mathbf{D}_{2} \in \mathscr{M}_{n, n}\left(\mathbb{F}_{q}\right)$ (the space of matrices over \mathbb{F}_{q} of size $n \times n$), find $\mathbf{A}, \mathbf{B} \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ (the space of invertible matrices over \mathbb{F}_{q} of size $n \times n$), such that

$$
\begin{aligned}
& \mathbf{D}_{1}=\mathbf{A C} \mathbf{C}_{1} \mathbf{B} \\
& \mathbf{D}_{2}=\mathbf{A C} \mathbf{C}_{2} \mathbf{B}
\end{aligned}
$$

\longrightarrow Demo
\longrightarrow In the assignment:

- Write down the equations;
- Find a better modelisation for this problem;

Modelisation

A motivating example: a better idea for modelisation.

Given matrices $\mathbf{C}_{1}, \mathbf{C}_{2}, \mathbf{D}_{1}, \mathbf{D}_{2} \in \mathscr{M}_{n, n}\left(\mathbb{F}_{q}\right)$ (the space of matrices over \mathbb{F}_{q} of size $n \times n$), find $\mathbf{A}, \mathbf{B} \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ (the space of invertible matrices over \mathbb{F}_{q} of size $n \times n$), such that

$$
\begin{aligned}
& \mathbf{A}^{-1} \mathbf{D}_{1}=\mathbf{C}_{1} \mathbf{B} \\
& \mathbf{A}^{-1} \mathbf{D}_{2}=\mathbf{C}_{2} \mathbf{B}
\end{aligned}
$$

Modelisation

A motivating example: a better idea for modelisation.

Given matrices $\mathbf{C}_{1}, \mathbf{C}_{2}, \mathbf{D}_{1}, \mathbf{D}_{2} \in \mathscr{M}_{n, n}\left(\mathbb{F}_{q}\right)$ (the space of matrices over \mathbb{F}_{q} of size $n \times n$), find $\mathbf{A}, \mathbf{B} \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ (the space of invertible matrices over \mathbb{F}_{q} of size $n \times n$), such that

$$
\begin{aligned}
& \mathbf{A}^{-1} \mathbf{D}_{1}=\mathbf{C}_{1} \mathbf{B} \\
& \mathbf{A}^{-1} \mathbf{D}_{2}=\mathbf{C}_{2} \mathbf{B}
\end{aligned}
$$

Modelisation

A motivating example: a better idea for modelisation.

Given matrices $\mathbf{C}_{1}, \mathbf{C}_{2}, \mathbf{D}_{1}, \mathbf{D}_{2} \in \mathscr{M}_{n, n}\left(\mathbb{F}_{q}\right)$ (the space of matrices over \mathbb{F}_{q} of size $n \times n$), find $\mathbf{A}, \mathbf{B} \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ (the space of invertible matrices over \mathbb{F}_{q} of size $n \times n$), such that

$$
\begin{aligned}
& \mathbf{A}^{-1} \mathbf{D}_{1}=\mathbf{C}_{1} \mathbf{B} \\
& \mathbf{A}^{-1} \mathbf{D}_{2}=\mathbf{C}_{2} \mathbf{B}
\end{aligned}
$$

\longrightarrow Results in a linear system with the same number of variables and equations.

Modelisation

A motivating example: a better idea for modelisation.

Given matrices $\mathbf{C}_{1}, \mathbf{C}_{2}, \mathbf{D}_{1}, \mathbf{D}_{2} \in \mathscr{M}_{n, n}\left(\mathbb{F}_{q}\right)$ (the space of matrices over \mathbb{F}_{q} of size $n \times n$), find $\mathbf{A}, \mathbf{B} \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ (the space of invertible matrices over \mathbb{F}_{q} of size $n \times n$), such that

$$
\begin{aligned}
& \mathbf{A}^{-1} \mathbf{D}_{1}=\mathbf{C}_{1} \mathbf{B} \\
& \mathbf{A}^{-1} \mathbf{D}_{2}=\mathbf{C}_{2} \mathbf{B}
\end{aligned}
$$

\longrightarrow Demo
\longrightarrow Results in a linear system with the same number of variables and equations.
\longrightarrow If $\mathbf{C}_{1}, \mathbf{C}_{2}, \mathbf{D}_{1}, \mathbf{D}_{2}$ are all full rank, we should have a unique solution.
\longrightarrow We can easily recover \mathbf{A} from \mathbf{A}^{-1}.

Multivariate digital signature schemes

Multivariate signatures

Examples.
MQDSS
SOFIA

Examples.

HFEv-
UOV

The MQ problem (recall)

A quadratic system of m equations in n variables over a finite field \mathbb{F}_{q} :

$$
f^{(k)}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq i \leq j \leq n} \gamma_{i j}^{(k)} x_{i} x_{j}+\sum_{1 \leq i \leq n} \beta_{i}^{(k)} x_{i}+\alpha^{(k)}
$$

The MQ problem

Given m multivariate quadratic polynomials $f^{(1)}, \ldots, f^{(m)}$ of n variables over a finite field $\mathbb{F}_{q^{\prime}}$ find a tuple $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ in $\mathbb{F}_{q^{\prime}}^{n}$, such that $f^{(1)}(\mathbf{x})=\ldots=f^{(m)}(\mathbf{x})=0$.

The MQ problem (recall)

A quadratic system of m equations in n variables over a finite field \mathbb{F}_{q} :

$$
f^{(k)}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq i \leq j \leq n} \gamma_{i j}^{(k)} x_{i} x_{j}+\sum_{1 \leq i \leq n} \beta_{i}^{(k)} x_{i}+\alpha^{(k)}
$$

The MQ problem

Given m multivariate quadratic polynomials $f^{(1)}, \ldots, f^{(m)}$ of n variables over a finite field $\mathbb{F}_{q^{\prime}}$ find a tuple $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ in $\mathbb{F}_{q^{\prime}}^{n}$, such that $f^{(1)}(\mathbf{x})=\ldots=f^{(m)}(\mathbf{x})=0$.
\longrightarrow Hard in general (should be hard for randomly generated instances).

The MQ problem (recall)

A quadratic system of m equations in n variables over a finite field \mathbb{F}_{q} :

$$
f^{(k)}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq i \leq j \leq n} \gamma_{i j}^{(k)} x_{i} x_{j}+\sum_{1 \leq i \leq n} \beta_{i}^{(k)} x_{i}+\alpha^{(k)}
$$

The MQ problem

Given m multivariate quadratic polynomials $f^{(1)}, \ldots, f^{(m)}$ of n variables over a finite field $\mathbb{F}_{q^{\prime}}$ find a tuple $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ in $\mathbb{F}_{q^{\prime}}^{n}$, such that $f^{(1)}(\mathbf{x})=\ldots=f^{(m)}(\mathbf{x})=0$.
\longrightarrow Hard in general (should be hard for randomly generated instances).
\longrightarrow Can become easy if we have some structure (a trapdoor).

The trapdoor construction

The trapdoor construction

- Central map:
$f:\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n} \rightarrow\left(f^{(1)}\left(x_{1}, \ldots, x_{n}\right), \ldots, f^{(m)}\left(x_{1}, \ldots, x_{n}\right)\right) \in \mathbb{F}_{q}^{m}$
- Two bijective linear (or affine) transformations:
$\mathbf{S} \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ and $\mathbf{T} \in \mathrm{GL}_{m}\left(\mathbb{F}_{q}\right)$
- Public map:
$p=\mathbf{T} \circ f \circ \mathbf{S}$

The trapdoor construction

- Central map:
$f:\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n} \rightarrow\left(f^{(1)}\left(x_{1}, \ldots, x_{n}\right), \ldots, f^{(m)}\left(x_{1}, \ldots, x_{n}\right)\right) \in \mathbb{F}_{q}^{m}$
- Two bijective linear (or affine) transformations:
$\mathbf{S} \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ and $\mathbf{T} \in \mathrm{GL}_{m}\left(\mathbb{F}_{q}\right)$
- Public map:
$p=\mathbf{T} \circ f \circ \mathbf{S}$

Main idea:

- The central map has a structure such that it is easy to find preimages: it is easy (polynomial time) to compute $f^{-1}(\mathbf{x})$ for a target vector \mathbf{x}.
- The linear transformations hide the structure of the central map.

The trapdoor construction

Unbalanced Oil and Vinegar (UOV)

[Kipnis, Patarin, Goubin, 1999]

The UOV central map

Unbalanced Oil and Vinegar [Kipnis, Patarin, Goubin, '99]

$$
\begin{aligned}
& \qquad f^{(k)}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i \in V, j \in V} \gamma_{i j}^{(k)} x_{i} x_{j}+\sum_{i \in V, j \in O} \gamma_{i j}^{(k)} x_{i} x_{j}+\sum_{i=1}^{n} \beta_{i}^{(k)} x_{i}+\alpha^{(k)} \\
& \text { Index set of vinegar variables: } V=\{1, \ldots, v\} \quad \text { Index set of oil variables: } O=\{v+1, \ldots, n\}
\end{aligned}
$$

The UOV central map

Unbalanced Oil and Vinegar [Kipnis, Patarin, Goubin, '99]

$$
f^{(k)}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i \in V, j \in V} \gamma_{i j}^{(k)} x_{i} x_{j}+\sum_{i \in V, j \in O} \gamma_{i j}^{(k)} x_{i} x_{j}+\sum_{i=1}^{n} \beta_{i}^{(k)} x_{i}+\alpha^{(k)}
$$

\longrightarrow The central map is constructed in such a way that enumerating all of the vinegar variables leaves us with a linear system in the oil variables (oil does not mix with oil).

The UOV central map

Unbalanced Oil and Vinegar [Kipnis, Patarin, Goubin, '99]

$$
\begin{aligned}
& \qquad f^{(k)}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i \in V, j \in V} \gamma_{i j}^{(k)} x_{i} x_{j}+\sum_{i \in V, j \in O} \gamma_{i j}^{(k)} x_{i} x_{j}+\sum_{i=1}^{n} \beta_{i}^{(k)} x_{i}+\alpha^{(k)} \\
& \text { Index set of vinegar variables: } V=\{1, \ldots, v\} \quad \text { Index set of oil variables: } O=\{v+1, \ldots, n\}
\end{aligned}
$$

\longrightarrow The central map is constructed in such a way that enumerating all of the vinegar variables leaves us with a linear system in the oil variables (oil does not mix with oil).
\longrightarrow Everything is as described in the previous slides, except that we do not have a linear transformation on the output: $\mathbf{T}=\mathbf{I}$.

Matrix representation of quadratic forms

Quadratic form: $f(\mathbf{x})=\sum \gamma_{i j} x_{i} x_{j}$

c
\mathbf{F}
$\gamma_{1,1}$ $\frac{\gamma_{1,2}}{2}$ $\frac{\gamma_{1,3}}{2}$ $\frac{\gamma_{1,4}}{2}$ $\frac{\gamma_{2,1}}{2}$ $\gamma_{2,2}$ $\frac{\gamma_{2,3}}{2}$ $\frac{\gamma_{2,4}}{2}$ $\frac{\gamma_{3,1}}{2}$ $\frac{\gamma_{3,2}}{2}$ $\gamma_{3,3}$ $\frac{\gamma_{3,4}}{2}$ $\frac{\gamma_{4,1}}{2}$ $\frac{\gamma_{4,2}}{2}$ $\frac{\gamma_{4,3}}{2}$ $\gamma_{4,4}$

X

x_{1}
x_{2}
x_{3}
x_{4}

so with $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$, we get $\mathbf{x}^{\top} \mathbf{F x}$.

Matrix representation of bilinear forms

Bilinear form: $f(\mathbf{x}, \mathbf{y})=\sum \gamma_{i j} x_{i} y_{j}$

$\left.$| \mathbf{X}^{\top} | | | |
| :---: | :---: | :---: | :---: |
| x_{1} | | | |$x_{2} \quad x_{3} \quad x_{4} \right\rvert\,$| |
| :---: |

y

y_{1}
y_{2}
y_{3}
y_{4}

so with $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$, we get $\mathbf{x}^{\top} \mathbf{B y}$.

The UOV central map

Toy example: $v=7, m=4$

*Grayed areas represent the entries that are possibly nonzero; blank areas denote the zero entries;

UOV key generation

In matrix representation
P $\mathbf{P}^{(k)}=\mathbf{S}^{\top} \mathbf{F}^{(k)} \mathbf{S}$, for all $k \in\{1, \ldots, m\}$.

UOV key generation

In matrix representation
($\mathbf{P}^{(k)}=\mathbf{S}^{\top} \mathbf{F}^{(k)} \mathbf{S}$, for all $k \in\{1, \ldots, m\}$.

Why?

UOV key generation

In matrix representation
($\mathbf{P}^{(k)}=\mathbf{S}^{\top} \mathbf{F}^{(k)} \mathbf{S}$, for all $k \in\{1, \ldots, m\}$.

Why?
\longrightarrow By definition, $p=f \circ \mathbf{S}$.

UOV key generation

In matrix representation

Why?

By definition, $p=f \circ \mathbf{S}$.
In matrix representation, we need:

$$
\mathbf{x}^{\top} \mathbf{P}^{(k)} \mathbf{x}=(\mathbf{S} \mathbf{x})^{\top} \mathbf{F}^{(k)}(\mathbf{S x})
$$

UOV key generation

In matrix representation

Why?

By definition, $p=f \circ \mathbf{S}$.
In matrix representation, we need:

$$
\begin{aligned}
& \mathbf{x}^{\top} \mathbf{P}^{(k)} \mathbf{x}=(\mathbf{S x})^{\top} \mathbf{F}^{(k)}(\mathbf{S x}) \\
& \mathbf{x}^{\top} \mathbf{P}^{(k)} \mathbf{x}=\mathbf{x}^{\top} \mathbf{S}^{\top} \mathbf{F}^{(k)} \mathbf{S x}
\end{aligned}
$$

UOV key generation

In matrix representation

Why?

By definition, $p=f \circ \mathbf{S}$.
In matrix representation, we need:

$$
\begin{aligned}
& \mathbf{x}^{\top} \mathbf{P}^{(k)} \mathbf{x}=(\mathbf{S x})^{\top} \mathbf{F}^{(k)}(\mathbf{S x}) \\
& \mathbf{x} \mathbf{P}^{(k)}=\mathbf{x} \mathbf{S}^{\top} \mathbf{F}^{(k)} \mathbf{S} \mathbf{x}
\end{aligned}
$$

UOV in the NIST competition

UOV
TUOV
PROV
MAYO
VOX
QR-UOV
SNOVA

UOV in the NIST competition

UOV
TUOV PROV
MAYO
VOX
QR-UOV
SNOVA
MQ-Sign (in KpqC)

Example.

	NIST SL	n	m	\mathbb{F}_{q}	\mid pk \mid (bytes)	\mid sk \mid (bytes)	\mid cpk \mid (bytes)	\mid sig+salt \mid (bytes)
ov-Ip	1	112	44	\mathbb{F}_{256}	278432	237896	43576	128
ov-Is	1	160	64	\mathbb{F}_{16}	412160	348704	66576	96
ov-III	3	184	72	\mathbb{F}_{256}	1225440	1044320	189232	200
ov-V	5	244	96	\mathbb{F}_{256}	2869440	2436704	446992	260

UOV in the NIST competition

UOV

TUOV PROV MAYO VOX QR-UOV SNOVA MQ-Sign (in KpqC)

Example.

	NIST SL	n	m	\mathbb{F}_{q}	\mid pk \mid (bytes)	\mid sk \mid (bytes)	\mid cpk \mid (bytes)	\mid sig+salt \mid (bytes)
ov-Ip	1	112	44	\mathbb{F}_{256}	278432	237896	43576	128
ov-Is	1	160	64	\mathbb{F}_{16}	412160	348704	66576	96
ov-III	3	184	72	\mathbb{F}_{256}	1225440	1044320	189232	200
ov-V	5	244	96	\mathbb{F}_{256}	2869440	2436704	446992	260

- We choose $n \sim 2.5 m$ (slightly bigger than)

UOV-like schemes have:

- Big public keys
- Small signatures

Attacks on UOV

- Direct attack
- Reconciliation attack
- Kipnis-Shamir attack
- Intersection attack

Direct attack

Direct attack

Try to forge a signature with only the knowledge of the public key.

Direct attack

Try to forge a signature with only the knowledge of the public key.

「-- Constraint for modelisation
For a target \mathbf{w}, find \mathbf{z} such that $p(\mathbf{z})=\mathbf{w}$.

Direct attack

Try to forge a signature with only the knowledge of the public key.

「--- Constraint for modelisation
For a target \mathbf{w}, find \mathbf{z} such that $p(\mathbf{z})=\mathbf{w}$.
\longrightarrow Equations:

$$
\begin{aligned}
& \mathbf{z}^{\top} \mathbf{P}^{(1)} \mathbf{z}=w_{1} \\
& \mathbf{z}^{\top} \mathbf{P}^{(2)} \mathbf{z}=w_{2} \\
& \ldots \\
& \mathbf{z}^{\top} \mathbf{P}^{(m)} \mathbf{z}=w_{m}
\end{aligned}
$$

Direct attack

Try to forge a signature with only the knowledge of the public key.

「--- Constraint for modelisation
For a target \mathbf{w}, find \mathbf{z} such that $p(\mathbf{z})=\mathbf{w}$.
\longrightarrow Equations:

$$
\begin{aligned}
& \mathbf{z}^{\top} \mathbf{P}^{(1)} \mathbf{z}=w_{1} \\
& \mathbf{z}^{\top} \mathbf{P}^{(2)} \mathbf{Z}=w_{1} \\
& \ldots \\
& \mathbf{z}^{\top} \mathbf{P}^{(m)} \mathbf{z}=w_{m}
\end{aligned}
$$

[Ding, Yang, Chen, Chen, Cheng, 2008]
(using description from [Samardjiska, Gligoroski, 2014])

The secret subspace O

The map p with a UOV trapdoor vanishes on a linear subspace $O \subset \mathbb{F}_{q}^{n}$ of $\operatorname{dim}(O)=m$:

$$
p(\mathbf{o})=0, \text { for all } \mathbf{o} \in O .
$$

The secret subspace O

The map p with a UOV trapdoor vanishes on a linear subspace $O \subset \mathbb{F}_{q}^{n}$ of $\operatorname{dim}(O)=m$:

$$
p(\mathbf{o})=0, \text { for all } \mathbf{o} \in O .
$$

Why?

The secret subspace O

The map p with a UOV trapdoor vanishes on a linear subspace $O \subset \mathbb{F}_{q}^{n}$ of $\operatorname{dim}(O)=m$:

$$
p(\mathbf{o})=0, \text { for all } \mathbf{o} \in O
$$

Why ?
Let $O^{\prime} \in \mathbb{F}_{q}^{n}$ be the m-dimensional space that consists of all the vectors whose first $n-m$ entries (corresponding to the vinegar variables) are zero: $O^{\prime}=\left\{\mathbf{v} \mid v_{i}=0\right.$ for all $\left.i \leq n-m\right\}$.

$=0$

The secret subspace O

The map p with a UOV trapdoor vanishes on a linear subspace $O \subset \mathbb{F}_{q}^{n}$ of $\operatorname{dim}(O)=m$:

$$
p(\mathbf{o})=0, \text { for all } \mathbf{o} \in O
$$

Why?
Let $O^{\prime} \in \mathbb{F}_{q}^{n}$ be the m-dimensional space that consists of all the vectors whose first $n-m$ entries (corresponding to the vinegar variables) are zero: $O^{\prime}=\left\{\mathbf{v} \mid v_{i}=0\right.$ for all $\left.i \leq n-m\right\}$.

$=0$
f vanishes on O^{\prime}.

The secret subspace O

The map p with a UOV trapdoor vanishes on a linear subspace $O \subset \mathbb{F}_{q}^{n}$ of $\operatorname{dim}(O)=m$:

$$
p(\mathbf{o})=0, \text { for all } \mathbf{o} \in O
$$

Why?
Let $O^{\prime} \in \mathbb{F}_{q}^{n}$ be the m-dimensional space that consists of all the vectors whose first $n-m$ entries (corresponding to the vinegar variables) are zero: $O^{\prime}=\left\{\mathbf{v} \mid v_{i}=0\right.$ for all $\left.i \leq n-m\right\}$.

$=0$
f vanishes on O^{\prime}.
Let $O=\mathbf{S}^{-1}\left(O^{\prime}\right)$.

The secret subspace O

The map p with a UOV trapdoor vanishes on a linear subspace $O \subset \mathbb{F}_{q}^{n}$ of $\operatorname{dim}(O)=m$:

$$
p(\mathbf{o})=0, \text { for all } \mathbf{o} \in O
$$

Why?
Let $O^{\prime} \in \mathbb{F}_{q}^{n}$ be the m-dimensional space that consists of all the vectors whose first $n-m$ entries (corresponding to the vinegar variables) are zero: $O^{\prime}=\left\{\mathbf{v} \mid v_{i}=0\right.$ for all $\left.i \leq n-m\right\}$.

$=0$
f vanishes on O^{\prime}.
Let $O=\mathbf{S}^{-1}\left(O^{\prime}\right)$.

Reconciliation attack

The polar form

The polar form of a quadratic map $p=\left(p^{(1)}, \ldots, p^{(m)}\right)$ is the bilinear form $p^{\prime}=\left(p^{\prime(1)}, \ldots, p^{\prime(m)}\right)$ such that

$$
p^{\prime(k)}(\mathbf{x}, \mathbf{y})=p^{(k)}(\mathbf{x}+\mathbf{y})-p^{(k)}(\mathbf{x})-p^{(k)}(\mathbf{y}), \text { for all } k \in\{1, \ldots, m\} .
$$

The polar form

The polar form of a quadratic map $p=\left(p^{(1)}, \ldots, p^{(m)}\right)$ is the bilinear form $p^{\prime}=\left(p^{\prime(1)}, \ldots, p^{\prime(m)}\right)$ such that

$$
p^{\prime(k)}(\mathbf{x}, \mathbf{y})=p^{(k)}(\mathbf{x}+\mathbf{y})-p^{(k)}(\mathbf{x})-p^{(k)}(\mathbf{y}), \text { for all } k \in\{1, \ldots, m\} .
$$

What does $p^{\prime(k)}(\mathbf{x}, \mathbf{y})$ look like ?

The polar form

The polar form of a quadratic map $p=\left(p^{(1)}, \ldots, p^{(m)}\right)$ is the bilinear form $p^{\prime}=\left(p^{\prime(1)}, \ldots, p^{\prime(m)}\right)$ such that

$$
p^{\prime(k)}(\mathbf{x}, \mathbf{y})=p^{(k)}(\mathbf{x}+\mathbf{y})-p^{(k)}(\mathbf{x})-p^{(k)}(\mathbf{y}), \text { for all } k \in\{1, \ldots, m\} .
$$

What does $p^{\prime(k)}(\mathbf{x}, \mathbf{y})$ look like ?
Let $\tilde{\mathbf{P}}^{(k)}$ be the upper triangular representation of $p^{(k)}$.

The polar form

The polar form of a quadratic map $p=\left(p^{(1)}, \ldots, p^{(m)}\right)$ is the bilinear form $p^{\prime}=\left(p^{\prime(1)}, \ldots, p^{\prime(m)}\right)$ such that

$$
p^{\prime(k)}(\mathbf{x}, \mathbf{y})=p^{(k)}(\mathbf{x}+\mathbf{y})-p^{(k)}(\mathbf{x})-p^{(k)}(\mathbf{y}), \text { for all } k \in\{1, \ldots, m\} .
$$

What does $p^{\prime(k)}(\mathbf{x}, \mathbf{y})$ look like ?
Let $\tilde{\mathbf{P}}^{(k)}$ be the upper triangular representation of $p^{(k)}$.

$$
\begin{aligned}
p^{\prime(k)}(\mathbf{x}, \mathbf{y}) & =p^{(k)}(\mathbf{x}+\mathbf{y})-p^{(k)}(\mathbf{x})-p^{(k)}(\mathbf{y}) \\
& =(\mathbf{x}+\mathbf{y})^{\top} \tilde{\mathbf{P}}^{(k)}(\mathbf{x}+\mathbf{y})-x^{\top} \tilde{\mathbf{P}}^{(k)} \mathbf{x}-y^{\top} \tilde{\mathbf{P}}^{(k)} \mathbf{y} \\
& =x^{\top} \tilde{\mathbf{P}}^{(k)} \mathbf{y}+y^{\top} \tilde{\mathbf{P}}^{(k)} \mathbf{x} \\
& =x^{\top}\left(\tilde{\mathbf{P}}^{(k)}+\tilde{\mathbf{P}}^{(k) \top}\right) \mathbf{y}=x^{\top} \mathbf{B}^{(k)} \mathbf{y}
\end{aligned}
$$

The polar form

The polar form of a quadratic map $p=\left(p^{(1)}, \ldots, p^{(m)}\right)$ is the bilinear form $p^{\prime}=\left(p^{\prime(1)}, \ldots, p^{\prime(m)}\right)$ such that

$$
p^{\prime(k)}(\mathbf{x}, \mathbf{y})=p^{(k)}(\mathbf{x}+\mathbf{y})-p^{(k)}(\mathbf{x})-p^{(k)}(\mathbf{y}), \text { for all } k \in\{1, \ldots, m\} .
$$

What does $p^{\prime(k)}(\mathbf{x}, \mathbf{y})$ look like ?
Let $\tilde{\mathbf{P}}^{(k)}$ be the upper triangular representation of $p^{(k)}$.

$$
\begin{aligned}
p^{\prime(k)}(\mathbf{x}, \mathbf{y}) & =p^{(k)}(\mathbf{x}+\mathbf{y})-p^{(k)}(\mathbf{x})-p^{(k)}(\mathbf{y}) \\
& =(\mathbf{x}+\mathbf{y})^{\top} \tilde{\mathbf{P}}^{(k)}(\mathbf{x}+\mathbf{y})-x^{\top} \tilde{\mathbf{P}}^{(k)} \mathbf{x}-y^{\top} \tilde{\mathbf{P}}^{(k)} \mathbf{y} \\
& =x^{\top} \tilde{\mathbf{P}}^{(k)} \mathbf{y}+y^{\top} \tilde{\mathbf{P}}^{(k)} \mathbf{x} \\
& =x^{\top}\left(\tilde{\mathbf{P}}^{(k)}+\tilde{\mathbf{P}}^{(k) \top}\right) \mathbf{y}=x^{\top} \mathbf{B}^{(k)} \mathbf{y}
\end{aligned}
$$

\longrightarrow So, p^{\prime} is bilinear and symmetric.

Reconciliation attack

Reconciliation attack

Find the secret oil subspace O : find m linearly independent vectors in O.

「--- Constraint for modelisation
For any vector $\mathbf{o}_{i} \in O$, we have that $\mathbf{o}_{i}^{\top} \mathbf{P}^{(k)} \mathbf{o}_{i}=0$ for all $k \in\{1, \ldots, m\}$.
For any pair of vectors $\mathbf{o}_{i}, \mathbf{o}_{j} \in O$, we have that $\mathbf{o}_{i}^{\top} \mathbf{B}^{(k)} \mathbf{o}_{j}=0$ for all $k \in\{1, \ldots, m\}$.

Reconciliation attack

Find the secret oil subspace O : find m linearly independent vectors in O.

-- Constraint for modelisation

For any vector $\mathbf{o}_{i} \in O$, we have that $\mathbf{0}_{i}^{\top} \mathbf{P}^{(k)} \mathbf{o}_{i}=0$ for all $k \in\{1, \ldots, m\}$.
For any pair of vectors $\mathbf{o}_{i}, \mathbf{o}_{j} \in O$, we have that $\mathbf{o}_{i}^{\top} \mathbf{B}^{(k)} \mathbf{o}_{j}=0$ for all $k \in\{1, \ldots, m\}$.

Equations:

$$
\begin{aligned}
& \text { For } i \in\{1, \ldots, m\} \text { do } \\
& \mathbf{o}_{i}=\left(o_{1}, \ldots, o_{v}, 0, \ldots, 1_{n-i+1}, 0, \ldots, 0\right) \\
& \text { Solve: } \\
& \mathbf{o}_{i}^{\top} \mathbf{B}^{(k)} \mathbf{o}_{j}=0 \text {, for } k \in\{1, \ldots, m\} \text { and } j<i \\
& \mathbf{o}_{i}^{\top} \mathbf{P}^{(k)} \mathbf{o}_{i}=0 \text {, for } k \in\{1, \ldots, m\}
\end{aligned}
$$

Reconciliation attack

Find the secret oil subspace O : find m linearly independent vectors in O.

-- - Constraint for modelisation

For any vector $\mathbf{o}_{i} \in O$, we have that $\mathbf{o}_{i}^{\top} \mathbf{P}^{(k)} \mathbf{o}_{i}=0$ for all $k \in\{1, \ldots, m\}$.
For any pair of vectors $\mathbf{o}_{i}, \mathbf{o}_{j} \in O$, we have that $\mathbf{o}_{i}^{\top} \mathbf{B}^{(k)} \mathbf{o}_{j}=0$ for all $k \in\{1, \ldots, m\}$.
\longrightarrow Equations:

$$
\begin{aligned}
& \text { For } i \in\{1, \ldots, m\} \text { do } \\
& \mathbf{o}_{i}=\left(o_{1}, \ldots, o_{v}, 0, \ldots, 1_{n-i+1}, 0, \ldots, 0\right) \\
& \text { Solve: } \\
& \mathbf{o}_{i}^{\top} \mathbf{B}^{(k)} \mathbf{o}_{j}=0 \text {, for } k \in\{1, \ldots, m\} \text { and } j<i \\
& \mathbf{o}_{i}^{\top} \mathbf{P}^{(k)} \mathbf{o}_{i}=0 \text {, for } k \in\{1, \ldots, m\}
\end{aligned}
$$

In the first iteration, we have only quadratic equations, so this is the bottleneck. Linear constraints facilitate the resolution of a system.

Reconciliation attack

Find the secret oil subspace O : find m linearly independent vectors in O.

-- - Constraint for modelisation

For any vector $\mathbf{o}_{i} \in O$, we have that $\mathbf{o}_{i}^{\top} \mathbf{P}^{(k)} \mathbf{o}_{i}=0$ for all $k \in\{1, \ldots, m\}$.
For any pair of vectors $\mathbf{o}_{i}, \mathbf{o}_{j} \in O$, we have that $\mathbf{o}_{i}^{\top} \mathbf{B}^{(k)} \mathbf{o}_{j}=0$ for all $k \in\{1, \ldots, m\}$.
\longrightarrow Equations:

$$
\begin{aligned}
& \text { For } i \in\{1, \ldots, m\} \text { do } \\
& \qquad \begin{aligned}
& \mathbf{o}_{i}=\left(o_{1}, \ldots, o_{v}, 0, \ldots, 1_{n-i+1}, 0, \ldots, 0\right) \\
& \text { Solve: } \\
& \qquad \begin{aligned}
\mathbf{o}_{i}^{\top} \mathbf{B}^{(k)} \mathbf{o}_{j} & =0, \text { for } k \in\{1, \ldots, m\} \text { and } j<i \\
\mathbf{o}_{i}^{\top} \mathbf{P}^{(k)} \mathbf{o}_{i} & =0, \text { for } k \in\{1, \ldots, m\}
\end{aligned}
\end{aligned} . \begin{array}{l}
\text {. }
\end{array}
\end{aligned}
$$

In the first iteration, we have only quadratic equations, so this is the bottleneck. Linear constraints facilitate the resolution of a system.

[Kipnis, Shamir, 1998]

The orthogonal complement of a subspace

Let $V \subset \mathbb{F}_{q}^{n}$. The orthogonal complement of V is V^{\perp} such that

$$
V^{\perp}=\left\{\tilde{\mathbf{v}}_{i} \in \mathbb{F}_{q}^{n} \mid\left\langle\mathbf{v}_{j}, \tilde{\mathbf{v}}_{i}\right\rangle=0, \text { for all } \mathbf{v}_{j} \in V\right\}
$$

If V is m-dimensional, then V^{\perp} is $(n-m)$-dimensional.

Kipnis-Shamir attack

Find the secret oil subspace O. Works well for the balanced case $(n=2 m)$ - the original proposal of OV.

Kipnis-Shamir attack

Find the secret oil subspace O. Works well for the balanced case ($n=2 m$) - the original proposal of OV.
「--- Constraint for modelisation
For each $\mathbf{B}^{(k)}$, we have that $\mathbf{B}^{(k)} O \subset O^{\perp}$.

Kipnis-Shamir attack

Find the secret oil subspace O. Works well for the balanced case ($n=2 m$) - the original proposal of OV.

Kipnis-Shamir attack

Find the secret oil subspace O. Works well for the balanced case $(n=2 m)$ - the original proposal of OV.

Kipnis-Shamir attack

Find the secret oil subspace O. Works well for the balanced case ($n=2 m$) - the original proposal of OV.

「--- Constraint for modelisation

-For each $\mathbf{B}^{(k)}$, we have that $\mathbf{B}^{(k)} O \subset O^{\perp}$.
Since $\operatorname{dim}\left(O^{\perp}\right)=n-m=m$, we have that $\mathbf{B}^{(k)} O=O^{\perp}$.
Since this is true for all $\mathbf{B}^{(k)}$, we have that $\mathbf{B}^{\left(k_{1}\right)} O=O^{\perp}=\mathbf{B}^{\left(k_{2}\right)} O$.
$\left\langle\mathbf{o}_{2}, \mathbf{B}^{(k)} \mathbf{o}_{1}\right\rangle=\mathbf{o}_{2}^{\top} \mathbf{B}^{(k)} \mathbf{o}_{1}$

$$
\begin{aligned}
& =p^{(k)}\left(\mathbf{o}_{1}, \mathbf{o}_{2}\right) \\
& =p^{(k)}\left(\mathbf{o}_{1}+\mathbf{o}_{2}\right)-p^{(k)}\left(\mathbf{o}_{1}\right)-p^{(k)}\left(\mathbf{o}_{2}\right)=0
\end{aligned}
$$

Kipnis-Shamir attack

Find the secret oil subspace O. Works well for the balanced case $(n=2 m)$ - the original proposal of OV.

---- Constraint for modelisation

-For each $\mathbf{B}^{(k)}$, we have that $\mathbf{B}^{(k)} O \subset O^{\perp}$.
Since $\operatorname{dim}\left(O^{\perp}\right)=n-m=m$, we have that $\mathbf{B}^{(k)} O=O^{\perp}$.
Since this is true for all $\mathbf{B}^{(k)}$, we have that $\mathbf{B}^{\left(k_{1}\right)} O=O^{\perp}=\mathbf{B}^{\left(k_{2}\right)} O$.
Hence, we have that $\mathbf{B}^{\left(k_{1}\right)-1} \mathbf{B}^{\left(k_{2}\right)} O=O$, for all pairs $\mathbf{B}^{\left(k_{1}\right)}, \mathbf{B}^{\left(k_{2}\right)}$.

$$
\begin{aligned}
\left\langle\mathbf{o}_{2}, \mathbf{B}^{(k)} \mathbf{o}_{1}\right\rangle & =\mathbf{o}_{2}^{\top} \mathbf{B}^{(k)} \mathbf{o}_{1} \\
& =p^{(k)}\left(\mathbf{o}_{1}, \mathbf{o}_{2}\right) \\
& =p^{(k)}\left(\mathbf{o}_{1}+\mathbf{o}_{2}\right)-p^{(k)}\left(\mathbf{o}_{1}\right)-p^{(k)}\left(\mathbf{o}_{2}\right)=0
\end{aligned}
$$

Kipnis-Shamir attack

Find the secret oil subspace O. Works well for the balanced case $(n=2 m)$ - the original proposal of OV.

「--- Constraint for modelisation

-For each $\mathbf{B}^{(k)}$, we have that $\mathbf{B}^{(k)} O \subset O^{\perp}$.
Since $\operatorname{dim}\left(O^{\perp}\right)=n-m=m$, we have that $\mathbf{B}^{(k)} O=O^{\perp}$.
Since this is true for all $\mathbf{B}^{(k)}$, we have that $\mathbf{B}^{\left(k_{1}\right)} O=O^{\perp}=\mathbf{B}^{\left(k_{2}\right)} O$.
Hence, we have that $\mathbf{B}^{\left(k_{1}\right)-1} \mathbf{B}^{\left(k_{2}\right)} O=O$, for all pairs $\mathbf{B}^{\left(k_{1}\right)}, \mathbf{B}^{\left(k_{2}\right)}$.

$$
\begin{aligned}
\left\langle\mathbf{o}_{2}, \mathbf{B}^{(k)} \mathbf{o}_{1}\right\rangle & =\mathbf{o}_{2}^{\top} \mathbf{B}^{(k)} \mathbf{o}_{1} \\
& =p^{(k)}\left(\mathbf{o}_{1}, \mathbf{o}_{2}\right) \\
& =p^{(k)}\left(\mathbf{o}_{1}+\mathbf{o}_{2}\right)-p^{(k)}\left(\mathbf{o}_{1}\right)-p^{(k)}\left(\mathbf{o}_{2}\right)=0
\end{aligned}
$$

\longrightarrow Finding a common invariant subspace of a large number of linear maps is easy.

Kipnis-Shamir attack

Find the secret oil subspace O. Works well for the balanced case $(n=2 m)$ - the original proposal of OV.

Γ^{---}Constraint for modelisation

-For each $\mathbf{B}^{(k)}$, we have that $\mathbf{B}^{(k)} O \subset O^{\perp}$.
Since $\operatorname{dim}\left(O^{\perp}\right)=n-m=m$, we have that $\mathbf{B}^{(k)} O=O^{\perp}$.
Since this is true for all $\mathbf{B}^{(k)}$, we have that $\mathbf{B}^{\left(k_{1}\right)} O=O^{\perp}=\mathbf{B}^{\left(k_{2}\right)} O$.
Hence, we have that $\mathbf{B}^{\left(k_{1}\right)-1} \mathbf{B}^{\left(k_{2}\right)} O=O$, for all pairs $\mathbf{B}^{\left(k_{1}\right)}, \mathbf{B}^{\left(k_{2}\right)}$.

$$
\begin{aligned}
\left\langle\mathbf{o}_{2}, \mathbf{B}^{(k)} \mathbf{o}_{1}\right\rangle & =\mathbf{o}_{2}^{\top} \mathbf{B}^{(k)} \mathbf{o}_{1} \\
& =p^{(k)}\left(\mathbf{o}_{1}, \mathbf{o}_{2}\right) \\
& =p^{(k)}\left(\mathbf{o}_{1}+\mathbf{o}_{2}\right)-p^{(k)}\left(\mathbf{o}_{1}\right)-p^{(k)}\left(\mathbf{o}_{2}\right)=0
\end{aligned}
$$

\longrightarrow Finding a common invariant subspace of a large number of linear maps is easy.
\longrightarrow Oil and Vinegar becomes Unbalanced Oil and Vinegar because of this attack.

Intersection attack

Find the secret oil subspace O. Use the ideas of the Kipnis-Shamir attack, but for the unbalanced case ($n>2 m$).

Intersection attack

Find the secret oil subspace O. Use the ideas of the Kipnis-Shamir attack, but for the unbalanced case ($n>2 m$).

「--- Constraint for modelisation
Since $n>2 m, \operatorname{dim}\left(O^{\perp}\right)>m$. We still have $\mathbf{B}^{\left(k_{1}\right)} O \subset O^{\perp}$ and $\mathbf{B}^{\left(k_{2}\right)} O \subset O^{\perp}$, but they are not (necessarily) the same subspace.

Intersection attack

Find the secret oil subspace O. Use the ideas of the Kipnis-Shamir attack, but for the unbalanced case ($n>2 m$).

---- Constraint for modelisation

Since $n>2 m, \operatorname{dim}\left(O^{\perp}\right)>m$. We still have $\mathbf{B}^{\left(k_{1}\right)} O \subset O^{\perp}$ and $\mathbf{B}^{\left(k_{2}\right)} O \subset O^{\perp}$, but they are not (necessarily) the same subspace.
Idea: assuming that $\mathbf{B}^{\left(k_{1}\right)} O \cap \mathbf{B}^{\left(k_{2}\right)} O \neq \varnothing$, try to find a vector \mathbf{x} in this intersection.

Intersection attack

Find the secret oil subspace O. Use the ideas of the Kipnis-Shamir attack, but for the unbalanced case ($n>2 m$).
「-- Constraint for modelisation
Since $n>2 m, \operatorname{dim}\left(O^{\perp}\right)>m$. We still have $\mathbf{B}^{\left(k_{1}\right)} O \subset O^{\perp}$ and $\mathbf{B}^{\left(k_{2}\right)} O \subset O^{\perp}$, but they are not (necessarily) the same subspace.
Idea: assuming that $\mathbf{B}^{\left(k_{1}\right)} O \cap \mathbf{B}^{\left(k_{2}\right)} O \neq \varnothing$, try to find a vector \mathbf{x} in this intersection.
If \mathbf{x} is in the intersection $\mathbf{B}^{\left(k_{1}\right)} O \cap \mathbf{B}^{\left(k_{2}\right)} O$, then both $\mathbf{B}^{\left(k_{1}\right)-1} \mathbf{x}$ and $\mathbf{B}^{\left(k_{2}\right)-1} \mathbf{x}$ are in O.

Intersection attack

Find the secret oil subspace O. Use the ideas of the Kipnis-Shamir attack, but for the unbalanced case ($n>2 m$).
--- Constraint for modelisation
Since $n>2 m, \operatorname{dim}\left(O^{\perp}\right)>m$. We still have $\mathbf{B}^{\left(k_{1}\right)} O \subset O^{\perp}$ and $\mathbf{B}^{\left(k_{2}\right)} O \subset O^{\perp}$, but they are not (necessarily) the same subspace.
Idea: assuming that $\mathbf{B}^{\left(k_{1}\right)} O \cap \mathbf{B}^{\left(k_{2}\right)} O \neq \varnothing$, try to find a vector \mathbf{x} in this intersection.
If \mathbf{x} is in the intersection $\mathbf{B}^{\left(k_{1}\right)} O \cap \mathbf{B}^{\left(k_{2}\right)} O$, then both $\mathbf{B}^{\left(k_{1}\right)-1} \mathbf{x}$ and $\mathbf{B}^{\left(k_{2}\right)-1} \mathbf{x}$ are in O.
\longrightarrow Equations:

$$
\begin{aligned}
& p\left(\mathbf{B}^{\left(k_{1}\right)-1} \mathbf{x}\right)=0 \\
& p\left(\mathbf{B}^{\left(k_{2}\right)-1} \mathbf{x}\right)=0 \\
& p^{\prime}\left(\mathbf{B}^{\left(k_{1}\right)-1} \mathbf{x}, \mathbf{B}^{\left(k_{2}\right)-1} \mathbf{x}\right)=0
\end{aligned}
$$

Intersection attack

Find the secret oil subspace O. Use the ideas of the Kipnis-Shamir attack, but for the unbalanced case ($n>2 m$).
「--- Constraint for modelisation
Since $n>2 m, \operatorname{dim}\left(O^{\perp}\right)>m$. We still have $\mathbf{B}^{\left(k_{1}\right)} O \subset O^{\perp}$ and $\mathbf{B}^{\left(k_{2}\right)} O \subset O^{\perp}$, but they are not (necessarily) the same subspace.
Idea: assuming that $\mathbf{B}^{\left(k_{1}\right)} O \cap \mathbf{B}^{\left(k_{2}\right)} O \neq \varnothing$, try to find a vector \mathbf{x} in this intersection.
If \mathbf{x} is in the intersection $\mathbf{B}^{\left(k_{1}\right)} O \cap \mathbf{B}^{\left(k_{2}\right)} O$, then both $\mathbf{B}^{\left(k_{1}\right)-1} \mathbf{x}$ and $\mathbf{B}^{\left(k_{2}\right)-1} \mathbf{x}$ are in O.
\longrightarrow Equations:

$$
\begin{aligned}
& p\left(\mathbf{B}^{\left(k_{1}\right)-1} \mathbf{x}\right)=0 \\
& p\left(\mathbf{B}^{\left(k_{2}\right)-1} \mathbf{x}\right)=0 \\
& p^{\prime}\left(\mathbf{B}^{\left(k_{1}\right)-1} \mathbf{x}, \mathbf{B}^{\left(k_{2}\right)-1} \mathbf{x}\right)=0
\end{aligned}
$$

\longrightarrow The attack can be generalised to find a vector in the intersection of more than two subspaces.

Recap

- The MQ problem is (usually) hard.
- We have a variety of solvers for (over)determined systems.
- Modelisation can be crucial to how efficient an attack is.
- The MQ problem can be easy for some structured systems. We use this to build trapdoors in crypto.
- We saw three different ways to model the recovery of the UOV trapdoor.

Recap

- The MQ problem is (usually) hard.
- We have a variety of solvers for (over)determined systems.
- Modelisation can be crucial to how efficient an attack is.
- The MQ problem can be easy for some structured systems. We use this to build trapdoors in crypto.
- We saw three different ways to model the recovery of the UOV trapdoor.

