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Algebraic cryptanalysis 

A type of cryptanalytic methods where the problem of finding the secret key 
(or any attack goal) is reduced to the problem of finding a solution to a 
nonlinear multivariate polynomial system of equations.
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Algebraic cryptanalysis 

secret key

or

forgery

• UOV

public key

message

multivariate
signature
scheme

• Direct attack
• Kipnis-Shamir
• Reconciliation
• Intersection

x1 + x2 + 1 = 0
x1x3 + x4 = 0

algebraic modeling MQ solver
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The MQ problem

Example. f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0

f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0

f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0

f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0

f5 : x1x2 + x2x3 + x1x4 + x3 = 0

f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

Given  multivariate quadratic polynomials  of  variables 
over a finite field , find a tuple  in , such that 

.

m f1, …, fm n
𝔽q x = (x1, …, xn) 𝔽n

q
f1(x) = … = fm(x) = 0

The MQ problem



Overview of solvers

𝔽2

, big 𝔽q q

FES

SAT solvers

Simple

Crossbred

 / F4 F5

FXL
BoolSolve

Hybrid
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𝒪(qn)

 / 𝒪(2n) 𝒪(2n− 2m)

𝒪(2n− 2m)

𝒪((
n + Dreg − 1

Dreg )
ω

)

𝒪(…)



(Fast) Exhaustive Search 
[Bouillaguet, Chen, Cheng, Chou, Niederhagen, Shamir, Yang, 2010]
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Exhaustive Search

Binary search tree

0 1



7

Exhaustive Search

Binary search tree

Worst-case complexity: 𝒪(2n)

0 1
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Exhaustive Search

Binary search tree

Worst-case complexity: 𝒪(2n)
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Fast Exhaustive Search
* The libFES solver

0000
0001
0011
0010
0110
0111
0101
0100

Gray code

• An ordering of the binary system where two successive values differ in only one bit.

Example. n = 4

1100
1101
1111
1110
1010
1011
1001
1000
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Fast Exhaustive Search Gray code
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Fast Exhaustive Search Gray code
0000
0001
0011
0010
0110
0111
0101
0100

1100
1101
1111
1110
1010
1011
1001
1000

Worst-case complexity: 𝒪(2n)
! But, it differs from the depth-first traversal in the polynomial factors



Macaulay matrix
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Linearisation
Linear systems are easy to solve, nonlinear systems are hard.
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Linearisation
Linear systems are easy to solve, nonlinear systems are hard.

Linearisation: for each nonlinear monomial, replace all of its occurrences by a new variable.



f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

Example.

f1 : y2 + y5 + x1 + x3 + x4 = 0
f2 : y4 + y3 + y6 + x1 + x2 + x4 = 0
f3 : y5 + y6 + x1 + x3 + 1 = 0
f4 : y1 + y2 + y4 + x3 + x4 + 1 = 0
f5 : y1 + y4 + y3 + x3 = 0
f6 : y2 + y3 + y6 + x1 + x2 + x3 + x4 = 0
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Linearisation
Linear systems are easy to solve, nonlinear systems are hard.

Linearisation: for each nonlinear monomial, replace all of its occurrences by a new variable.
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Linearisation

Linearisation adds solutions: a random quadratic system of  equations in  variables, when , is 

expected to have one solution (probability is  for systems over ). The corresponding linearised 

system has a solution space of dimension .

m n n = m

∼
1
q

𝔽q

(n + 1
2 ) − m

 quadratic plus  linear monomials(n
2) n
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Linearisation

Linearisation adds solutions: a random quadratic system of  equations in  variables, when , is 

expected to have one solution (probability is  for systems over ). The corresponding linearised 

system has a solution space of dimension .

m n n = m

∼
1
q

𝔽q

(n + 1
2 ) − m

 quadratic plus  linear monomials(n
2) n

Loss of information: e.g. assignment ; ; ; is part of a valid solution to the linearised 
system, but .

x1 = 1 x2 = 0 y1 = 1
x1x2 ≠ y1
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Macaulay matrix

f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

x1x2 x1x3 x1x4 x1 x2x3 x2x4 x2 x3x4 x3 x4 1

f1

f2

f3

f4

f5

f6

Monomials

Equations
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Macaulay matrix

f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

0 1 0 1 0 1 0 0 1 1 0

0 0 1 1 1 0 1 1 0 1 0

0 0 0 1 0 1 0 1 1 0 1

1 1 0 1 1 0 0 0 1 1 1

1 0 1 1 1 0 0 0 1 0 0

0 1 1 1 0 0 1 1 1 1 0

x1x2 x1x3 x1x4 x1 x2x3 x2x4 x2 x3x4 x3 x4 1

f1

f2

f3

f4

f5

f6

Monomials

Equations



SAT solvers 
CryptoMiniSat [Soos, Nohl, Castelluccia, 2009], WDSat [T., Dequen, Ionica, 2020] 

 

Simple algorithm 
[Bouillaguet, Delaplace, T., 2021]
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Partial assignment and conflicts
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Simple algorithm
Partial assignment

Gaussian elimination
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Simple algorithm

Guess sufficiently many variables so that the remaining 
polynomial system can be solved by linearization.



Overview of solvers

𝔽2

, big 𝔽q q

FES

SAT solvers

Simple

Crossbred

 / F4 F5

FXL
BoolSolve

Hybrid
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𝒪(qn)

 / 𝒪(2n) 𝒪(2n− 2m)

𝒪(2n− 2m)

𝒪((
n + Dreg − 1

Dreg )
ω

)

𝒪(…)



Gröbner basis algorithms 
[Buchberger, 1965]

[Lazard, 1983]
 [Faugère, 1999/2002] 

(XL [Courtois, Klimov, Patarin, Shamir, 2000])
F4/F5
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Gröbner basis algorithms (intuition)
*We are essentially describing the XL algorithm.
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x1x2 x1x3 x1x4 x1 x2x3 x2x4 x2 x3x4 x3 x4 1

f1

f2

f3

f4

f5

f6

0 1 0 1 0 1 0 0 1 1 0

0 0 1 1 1 0 1 1 0 1 0

0 0 0 1 0 1 0 1 1 0 1

1 1 0 1 1 0 0 0 1 1 1

1 0 1 1 1 0 0 0 1 0 0

0 1 1 1 0 0 1 1 1 1 0

Gröbner basis algorithms (intuition)
*We are essentially describing the XL algorithm.
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f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

x1x2 x1x3 x1x4 x1 x2x3 x2x4 x2 x3x4 x3 x4 1

f1

f2

f3

f4

f5

f6

0 1 0 1 0 1 0 0 1 1 0

0 0 1 1 1 0 1 1 0 1 0

0 0 0 1 0 1 0 1 1 0 1

1 1 0 1 1 0 0 0 1 1 1

1 0 1 1 1 0 0 0 1 0 0

0 1 1 1 0 0 1 1 1 1 0

Gröbner basis algorithms (intuition)
*We are essentially describing the XL algorithm.
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f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

x1x2 x1x3 x1x4 x1 x2x3 x2x4 x2 x3x4 x3 x4 1

f1

f2

f3

f4

f5

f6

0 1 0 1 0 1 0 0 1 1 0

0 0 1 1 1 0 1 1 0 1 0

0 0 0 1 0 1 0 1 1 0 1

1 1 0 1 1 0 0 0 1 1 1

1 0 1 1 1 0 0 0 1 0 0

0 1 1 1 0 0 1 1 1 1 0

x1x2x3 x1x2x4 x1x3x4 x2x3x4

Gröbner basis algorithms (intuition)
*We are essentially describing the XL algorithm.

x1 f1

x2 f1…

D = 3
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f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

x1x2 x1x3 x1x4 x1 x2x3 x2x4 x2 x3x4 x3 x4 1

f1

f2

f3

f4

f5

f6

0 1 0 1 0 1 0 0 1 1 0

0 0 1 1 1 0 1 1 0 1 0

0 0 0 1 0 1 0 1 1 0 1

1 1 0 1 1 0 0 0 1 1 1

1 0 1 1 1 0 0 0 1 0 0

0 1 1 1 0 0 1 1 1 1 0

x1x2x3 x1x2x4 x1x3x4 x2x3x4

x1 f1

x2 f1

Gröbner basis algorithms (intuition)

…

*We are essentially describing the XL algorithm.

x1x2 f1

D = 4

x1x3 f1

x1x2x3x4
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XL/Gröbner basis algorithms: complexity
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XL/Gröbner basis algorithms: complexity

𝒪 mDreg (
n + Dreg − 1

Dreg )
ω
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XL/Gröbner basis algorithms: complexity

𝒪 mDreg (
n + Dreg − 1

Dreg )
ω

: degree of regularityDreg (1 − t2)m

(1 − t)n
the power of the first non-positive coefficient in the expansion of



Overview of solvers

𝔽2

, big 𝔽q q

FES

SAT solvers

Simple

Crossbred

 / F4 F5

FXL
BoolSolve
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𝒪(qn)

 / 𝒪(2n) 𝒪(2n− 2m)

𝒪(2n− 2m)

𝒪((
n + Dreg − 1

Dreg )
ω

)

𝒪(…)
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Algebraic cryptanalysis: try it yourself !

Given matrices  (the space of matrices over  of size ), find  (the space of 
invertible matrices over  of size ), such that 

C1, C2, D1, D2 ∈ ℳn,n(𝔽q) 𝔽q n × n A, B ∈ GLn(𝔽q)
𝔽q n × n

  D1 = AC1B
  D2 = AC2B

Example.
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Algebraic cryptanalysis: try it yourself !

Given matrices  (the space of matrices over  of size ), find  (the space of 
invertible matrices over  of size ), such that 

C1, C2, D1, D2 ∈ ℳn,n(𝔽q) 𝔽q n × n A, B ∈ GLn(𝔽q)
𝔽q n × n

  D1 = AC1B
  D2 = AC2B

Demo

In the assignment: • Write down the equations;
• Find a better modelisation for this problem;

Example.
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Modelisation

A motivating example: a better idea for modelisation.

Given matrices  (the space of matrices over  of size ), find  (the space of 
invertible matrices over  of size ), such that 

C1, C2, D1, D2 ∈ ℳn,n(𝔽q) 𝔽q n × n A, B ∈ GLn(𝔽q)
𝔽q n × n

  A−1D1 = C1B
  A−1D2 = C2B
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𝔽q n × n

  A−1D1 = C1B
  A−1D2 = C2B

Demo

Results in a linear system with the same number of variables and equations. 
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Modelisation

A motivating example: a better idea for modelisation.

Given matrices  (the space of matrices over  of size ), find  (the space of 
invertible matrices over  of size ), such that 

C1, C2, D1, D2 ∈ ℳn,n(𝔽q) 𝔽q n × n A, B ∈ GLn(𝔽q)
𝔽q n × n

  A−1D1 = C1B
  A−1D2 = C2B

Demo

Results in a linear system with the same number of variables and equations. 

If  are all full rank, we should have a unique solution.C1, C2, D1, D2

We can easily recover  from .A A−1



O V
Multivariate digital signature 

schemes 
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Multivariate signatures

trapdoor 
construction

Fiat-Shamir 
construction

MQDSS
SOFIA

HFEv-

UOV

Examples. Examples.
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The MQ problem (recall)

Given  multivariate quadratic polynomials  of  
variables over a finite field , find a tuple  in , such 
that .

m f (1), …, f (m) n
𝔽q x = (x1, …, xn) 𝔽n

q
f (1)(x) = … = f (m)(x) = 0

The MQ problem

f (k)(x1, …, xn) = ∑
1≤i≤ j≤n

γ(k)
ij xixj + ∑

1≤i≤n

β(k)
i xi + α(k)

A quadratic system of  equations in  variables over a finite field  : m n 𝔽q
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Hard in general (should be hard for randomly generated instances).
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The MQ problem (recall)

Given  multivariate quadratic polynomials  of  
variables over a finite field , find a tuple  in , such 
that .

m f (1), …, f (m) n
𝔽q x = (x1, …, xn) 𝔽n

q
f (1)(x) = … = f (m)(x) = 0

The MQ problem

f (k)(x1, …, xn) = ∑
1≤i≤ j≤n

γ(k)
ij xixj + ∑

1≤i≤n

β(k)
i xi + α(k)

A quadratic system of  equations in  variables over a finite field  : m n 𝔽q

Hard in general (should be hard for randomly generated instances).

Can become easy if we have some structure (a trapdoor).
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The trapdoor construction
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The trapdoor construction

• Central map:   

• Two bijective linear (or affine) transformations:  
 and 

• Public map: 

f : (x1, …, xn) ∈ 𝔽n
q → (f (1)(x1, …, xn), …, f (m)(x1, …, xn)) ∈ 𝔽m

q

S ∈ GLn(𝔽q) T ∈ GLm(𝔽q)

p = T ∘ f ∘ S
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The trapdoor construction

• Central map:   

• Two bijective linear (or affine) transformations:  
 and 

• Public map: 

f : (x1, …, xn) ∈ 𝔽n
q → (f (1)(x1, …, xn), …, f (m)(x1, …, xn)) ∈ 𝔽m

q

S ∈ GLn(𝔽q) T ∈ GLm(𝔽q)

p = T ∘ f ∘ S

Main idea:

• The central map has a structure such that it is easy to find preimages: it is easy 
(polynomial time) to compute  for a target vector .

• The linear transformations hide the structure of the central map.

f −1(x) x
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The trapdoor construction

w ∈ 𝔽m
q x ∈ 𝔽m

q y ∈ 𝔽n
q z ∈ 𝔽n

q

T−1 S−1f −1

p

General workflow
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The trapdoor construction

A A

Signing Verification

Alice Bob
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The trapdoor construction

A A

Signing Verification

Alice Bob

f, S, T p
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The trapdoor construction

A A

Signing Verification

Alice Bob

m

f, S, T p
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The trapdoor construction

A A

Signing Verification

Alice BobCompute:
•
•
•
•  

w = H(m) ∈ 𝔽m
q

x = T−1(w) ∈ 𝔽m
q

y = f −1(x) ∈ 𝔽n
q

z = S−1(y) ∈ 𝔽n
q

m

f, S, T p
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The trapdoor construction

A A

Signing Verification

Alice BobCompute:
•
•
•
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w = H(m) ∈ 𝔽m
q

x = T−1(w) ∈ 𝔽m
q

y = f −1(x) ∈ 𝔽n
q

z = S−1(y) ∈ 𝔽n
q

zmm

f, S, T p
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The trapdoor construction

A A

Signing Verification

Alice BobCompute:
•
•
•
•  

w = H(m) ∈ 𝔽m
q

x = T−1(w) ∈ 𝔽m
q

y = f −1(x) ∈ 𝔽n
q

z = S−1(y) ∈ 𝔽n
q

Compute:
•
•  

Check if 

w = H(m) ∈ 𝔽m
q

w′￼= p(z) ∈ 𝔽m
q

w′￼= w

zmm

f, S, T p
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The trapdoor construction

A A

Signing Verification

Alice BobCompute:
•
•
•
•  

w = H(m) ∈ 𝔽m
q

x = T−1(w) ∈ 𝔽m
q

y = f −1(x) ∈ 𝔽n
q

z = S−1(y) ∈ 𝔽n
q

Compute:
•
•  

Check if 

w = H(m) ∈ 𝔽m
q

w′￼= p(z) ∈ 𝔽m
q

w′￼= w

mzmm

f, S, T p



O V
Unbalanced Oil and Vinegar

(UOV) 
[Kipnis, Patarin, Goubin, 1999]
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The UOV central map

Unbalanced Oil and Vinegar [Kipnis, Patarin, Goubin, ’99]

f (k)(x1, …, xn) = ∑
i∈V,j∈V

γ(k)
ij xixj + ∑

i∈V,j∈O

γ(k)
ij xixj +

n

∑
i=1

β(k)
i xi + α(k)

Index set of vinegar variables: V = {1,…, v} Index set of oil variables: O = {v + 1,…, n}
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i∈V,j∈V

γ(k)
ij xixj + ∑

i∈V,j∈O

γ(k)
ij xixj +

n

∑
i=1

β(k)
i xi + α(k)

Index set of vinegar variables: V = {1,…, v} Index set of oil variables: O = {v + 1,…, n}

The central map is constructed in such a way that enumerating all of the vinegar variables leaves us with 
a linear system in the oil variables (oil does not mix with oil).
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The UOV central map

Unbalanced Oil and Vinegar [Kipnis, Patarin, Goubin, ’99]

f (k)(x1, …, xn) = ∑
i∈V,j∈V

γ(k)
ij xixj + ∑

i∈V,j∈O

γ(k)
ij xixj +

n

∑
i=1

β(k)
i xi + α(k)

Index set of vinegar variables: V = {1,…, v} Index set of oil variables: O = {v + 1,…, n}

The central map is constructed in such a way that enumerating all of the vinegar variables leaves us with 
a linear system in the oil variables (oil does not mix with oil).
Everything is as described in the previous slides, except that we do not have a linear transformation on 
the output: . T = I
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Matrix representation of quadratic forms

Quadratic form:  f(x) = ∑ γijxixj

so with , we get .x = (x1, …, xn) x⊤Fx
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Matrix representation of bilinear forms

Bilinear form:  f(x, y) = ∑ γijxiyj

so with  and , we get .x = (x1, …, xn) y = (y1, …, yn) x⊤By
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The UOV central map

Toy example:  , v = 7 m = 4

F(1) F(2) F(3) F(4)

x1 x2 x7… x8 x11…
x1x2

x7

…

x8

x11

…

oil 
variables

vinegar 
variables

*Grayed areas represent the entries that are possibly nonzero; blank areas denote the zero entries;
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UOV key generation
In matrix representation

.P(k) = S⊤F(k)S, for all k ∈ {1,…, m}
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UOV in the NIST competition

UOV
TUOV
PROV
MAYO
VOX
QR-UOV
SNOVA

Example.

• We choose  (slightly bigger than) 
 

UOV-like schemes have:
• Big public keys
• Small signatures 

n ∼ 2.5m

MQ-Sign (in KpqC)



O V
Attacks on UOV
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Attacks on UOV

• Direct attack

• Reconciliation attack

• Kipnis-Shamir attack

• Intersection attack



O V
Direct attack
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Direct attack

Try to forge a signature with only the knowledge of the public key.
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Direct attack

Try to forge a signature with only the knowledge of the public key.

Constraint for modelisation

For a target , find  such that .w z p(z) = w

Equations:

z⊤P(1)z = w1

z⊤P(2)z = w2

…
z⊤P(m)z = wm



  z⊤P(m)z = wm

  z⊤P(2)z = w1

  z⊤P(1)z = w1

47

Direct attack

Try to forge a signature with only the knowledge of the public key.

Constraint for modelisation

For a target , find  such that .w z p(z) = w

Equations:

…



O V
Reconciliation attack 

[Ding, Yang, Chen, Chen, Cheng, 2008] 
(using description from [Samardjiska, Gligoroski, 2014])



49

The secret subspace O
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q dim(O) = m

.p(o) = 0, for all o ∈ O



49

The secret subspace O
The map  with a UOV trapdoor vanishes on a linear subspace  of  :p O ⊂ 𝔽n

q dim(O) = m

.p(o) = 0, for all o ∈ O
Why ?



49

The secret subspace O
The map  with a UOV trapdoor vanishes on a linear subspace  of  :p O ⊂ 𝔽n

q dim(O) = m

.p(o) = 0, for all o ∈ O
Why ?

Let  be the -dimensional space that consists of all the vectors whose first  entries (corresponding to the 
vinegar variables) are zero: .

O′￼∈ 𝔽n
q m n − m

O′￼ = {v |vi = 0 for all i ≤ n − m}

= 0



49

The secret subspace O
The map  with a UOV trapdoor vanishes on a linear subspace  of  :p O ⊂ 𝔽n

q dim(O) = m

.p(o) = 0, for all o ∈ O
Why ?

 vanishes on .f O′￼

Let  be the -dimensional space that consists of all the vectors whose first  entries (corresponding to the 
vinegar variables) are zero: .

O′￼∈ 𝔽n
q m n − m

O′￼ = {v |vi = 0 for all i ≤ n − m}

= 0



49

The secret subspace O
The map  with a UOV trapdoor vanishes on a linear subspace  of  :p O ⊂ 𝔽n

q dim(O) = m

.p(o) = 0, for all o ∈ O
Why ?

 vanishes on .f O′￼

Let .O = S−1(O′￼)

Let  be the -dimensional space that consists of all the vectors whose first  entries (corresponding to the 
vinegar variables) are zero: .

O′￼∈ 𝔽n
q m n − m

O′￼ = {v |vi = 0 for all i ≤ n − m}

= 0



49

The secret subspace O
The map  with a UOV trapdoor vanishes on a linear subspace  of  :p O ⊂ 𝔽n

q dim(O) = m

.p(o) = 0, for all o ∈ O
Why ?

 vanishes on .f O′￼

Let .O = S−1(O′￼)

 vanishes on .p O

Let  be the -dimensional space that consists of all the vectors whose first  entries (corresponding to the 
vinegar variables) are zero: .

O′￼∈ 𝔽n
q m n − m

O′￼ = {v |vi = 0 for all i ≤ n − m}

= 0



50

Reconciliation attack

Find the secret oil subspace  : find  linearly independent vectors in .O m O
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The polar form

The polar form of a quadratic map  is the bilinear form  such that p = (p(1), …, p(m)) p′￼ = (p′￼(1), …, p′￼(m))

p′￼(k)(x, y) = p(k)(x + y) − p(k)(x) − p(k)(y),  for all k ∈ {1,…, m} .
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The polar form of a quadratic map  is the bilinear form  such that p = (p(1), …, p(m)) p′￼ = (p′￼(1), …, p′￼(m))

p′￼(k)(x, y) = p(k)(x + y) − p(k)(x) − p(k)(y),  for all k ∈ {1,…, m} .

What does  look like ?p′￼(k)(x, y)

Let  be the upper triangular representation of .P̃(k) p(k)

p′￼(k)(x, y) = p(k)(x + y) − p(k)(x) − p(k)(y)

= (x + y)⊤P̃(k)(x + y) − x⊤P̃(k)x − y⊤P̃(k)y

= x⊤P̃(k)y + y⊤P̃(k)x

= x⊤(P̃(k) + P̃(k)⊤)y = x⊤B(k)y

So,  is bilinear and symmetric.p′￼
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O V
Kipnis-Shamir attack 

[Kipnis, Shamir, 1998]
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The orthogonal complement of a subspace

Let . The orthogonal complement of  is  such thatV ⊂ 𝔽n
q V V⊥

.V⊥ = {ṽi ∈ 𝔽n
q |⟨vj, ṽi⟩ = 0, for all vj ∈ V}

If  is -dimensional, then  is -dimensional.V m V⊥ (n − m)
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Kipnis-Shamir attack

Find the secret oil subspace . Works well for the balanced case ( ) - the original proposal of OV.O n = 2m

Finding a common invariant subspace of a large number of linear maps is easy.

Oil and Vinegar becomes Unbalanced Oil and Vinegar because of this attack.
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O V
Intersection attack 

[Beullens, 2021]
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Recap

‣ The MQ problem is (usually) hard.

‣ We have a variety of solvers for (over)determined systems.

‣ Modelisation can be crucial to how efficient an attack is.

‣ The MQ problem can be easy for some structured systems. We use this to build trapdoors in crypto.

‣ We saw three different ways to model the recovery of the UOV trapdoor.
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Credits: created with       , and Manim.

Resources at https://mtrimoska.com/QSI-multivariate/


