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Post-quantum cryptography

@ RSA (factorization) and ECC

(discrete logarithms) become
broken in polynomial time

@ Grover's algorithm accelerates
[Shor] exhaustive search of the key:

— from V 2|k| = 2|k‘/2

@ Post-quantum crypto = “we
don't use them anymore”

B Shor, “Algorithms for Quantum Computation: Discrete Logarithms and
Factoring”, FOCS 1994

B Grover, "A Fast Quantum Mechanical Algorithm for Database Search”,
STOC 1996
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Post-quantum symmetric crypto?

ABOUT SYMMETRIG . \WE CAN

-RIGHT?
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...right?

Let's take a block cipher: Ey a family of permutations of {0,1}" indexed
by a key k. For example, AES-256.

On an ideal cipher, exhaustive search finds the key in  time 2/"I
~— ———

Resp. Grover's search Resp. 2l41/2

Except that there are no ideal ciphers: only ciphers which behave as
ideal.*

The cipher behaves as ideal if there is no better way to find the key
than exhaustive search (resp. Grover's search). J

*
As far as we know.
a/84
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The cycle of cryptanalysis

How do we know that ciphers are secure?

Conclusion
[e]o]e}

Start

I

Design a new
cryptosystem

Succeed Fail

Try to attack it
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The cycle of cryptanalysis, updated

How do we know that cryptosystems are quantum-secure? J

Start

post-quantum

quantumly

Design a new
cryptosystem

Succeed Fail

Try to attack it
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What is an attack?

o A key-recovery attack = an algorithm that finds the key faster
than exhaustive search (resp. Grover)

o If we find one, the cipher is broken

o If we can't break the entire cipher, we weaken it and try again

@ “How many rounds broken” (10/14 for AES-256) gives a security
margin

We're leaving out other types of attacks, other attacker models, other primitives, etc.
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Quantum vs. classical cryptanalysis

Everything is possible!
@ No classical attack (= 2/) and no quantum attack (= 2/4/2)
Q A classical attack (< 2/“) but no quantum attack (= 2/“/2)
© A classical attack (< 2/“) and a quantum attack (< 2///2)
© No classical attack (= 2//) but a quantum attack (< 2/“/2)

Case 4 is the most problematic for us. So far only specific
examples. . . and not AES-256. J
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Quantum search

X a search space, f : X — {0,1} with G = f~1(1) C X, find x € G.
Classical (exhaustive) search:

X

Repeat — times Selipl 2 € X
Peat 16| Test if f(x) = 1

Conclusion
[e]o]e}

Quantum (Grover’s) search:

X
Repeat ~ u times .
|G| Test if f(x) =1 — quantumly

Sample x € X — quantumly

D Grover, "A fast quantum mechanical algorithm for database search”, STOC 96

D Brassard, Hgyer, Mosca, Tapp, “Quantum amplitude amplification and
estimation”, Contemp. Math. 2002
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Exhaustive key search

We test keys k' at random until we find one that agrees with a few pairs

(%, B(x))-
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Example: key search

Needs a few classical pairs x, Ex(x) for known x.

Classical: guess k/, compute Ey/(x) and compare, until it matches. J

Quantum: run Grover's search; to test a key k’, compute E,/(x) and
compare.

@ Needs a quantum circuit to test k/, i.e., a quantum implementation
of E

Implementing E is not easy: for AES the 2% Grover's search iterates cost
> 280 quantum gates.

D Jaques, Naehrig, Roetteler, Virdia, “Implementing Grover oracles for quantum key
search on AES and LowMC", EUROCRYPT 2020
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Correspondence of attacks

Many classical attacks can be “turned quantum™

@ Linear and differential attacks [KLLN16]
@ Square and Demirci-Selguk MITM attacks [BNS19]
@ Boomerang (differential) attacks [FNS21]
° ..

Typically due to the “distinguisher rounds + key-recovery rounds”

structure.
X — Em F. Ek(X) =F.o0 EM(X)
() )
Distinguisher Last rounds:
We're guessing
the key
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Correspondence of attacks (ctd.)

Typical key-recovery attack:
@ Guess subkey k’
@ Remove the last rounds and use the distinguisher

— if it works, guess is correct

Classical time:

21T % running the distinguisher

Quantum time:

21172 5 running the distinguisher
— if the distinguisher is a search, we have a quantum attack:

2 T <2l — 2172 5 /T < 272
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Examples

Linear cryptanalysis: construct a pair of masks «, 8 such that:

The Boolean function x — « - x @ - Ep(x) is more biased for Ep than a
random permutation. J

Differential cryptanalysis: construct a pair of differences A;, A, such
that:

A pair of plaintexts x, x & A; maps to Ep(x), Ep(x) & A, with
probability bigger than for a random permutation.

In both cases the distinguisher can be accelerated:

o Estimate the bias faster using Amplitude Estimation

o Find a difference pair faster using Grover search

D Kaplan, Leurent, Leverrier, Naya-Plasencia, “Quantum Differential and Linear
Cryptanalysis”, ToSC 2016
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Correspondence of attacks (ctd.)

But there are much more complex attacks, and not everything
admits a quadratic speedup.

A typical issue starts when the attack needs a large memory (e.g.,
precomputed table of 280 entries: already bigger than Grover's limit).

On AES, quantum attacks break less rounds so far. J
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Simon'’s algorithm

Let £ : {0,1}" — {0,1}" be a function with a hidden period:
f(x®s) =f(x), find s.
Classical resolution:
Find a collision: (x,y),x # y such that f(x) = f(y), and hope that:
XPs=y — s=xDy

In time ~ 2n/2,
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Simon’s algorithm (ctd.)

Start with 2n qubits |0) |0)

Apply H" and f 5, %) F())

Measure the second register |xo) + |xo @ 's)

Apply H®" >, ((—1ye 4 (—1)boe)v) |y)

=22, (=1 (1 +(=1)7) Iy)

Measure y such that 1+ (=1)*Y #0 < s-y =0

v

@ With > n values y1, ... yn,, we obtain either a linear system in's, or a
system of full rank (no period)

@ Works in the “typical crypto” case of a random periodic f

D Simon, “On the power of quantum computation”, FOCS 1994
21/44



Attacks based on Quantum Search Superposition Attacks Super-quadratic Q1 Attacks Conclusion
000000000 000@0000000 000000000000 [e]o]e}

Simon'’s algorithm (simplified)

Query f in superposition — quantum magic — random y such that
s-y=0. J

= repeat this =~ n times, solve a linear system to find s.
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Example: the Even-Mansour cipher

Built from a public permutation P : {0,1}" — {0,1}" and 2n bits of key.
ki ko

X 4$7 P 4%—) Ek17k2(X)

By io(X) = ko ® P(x @ kp)

Classical security:
If P is a random permutation, an adversary performing T queries to P
and D queries to Ey, k, needs T - D = 2" to recover the key.

Q Even, Mansour, “A Construction of a Cipher from a Single Pseudorandom
Permutation”, J. Cryptol. 1997

D Dunkelman, Keller, Shamir, “Slidex Attacks on the Even-Mansour Encryption
Scheme”, J. Crypto 2015
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Simon-based attack on Even-Mansour

ki ko

X 4$7 P 4%—) Ek17kz(X)

Define: f(x) = Ex, ko (X) @ P(x) = P(x ® k1) @ P(x) @ ko

Quantum attack:
o f satisfies f(x @ ky) = f(x).
@ With quantum access to f, find k; with Simon’s algorithm.
@ A query to f contains a query to Ey, .

— complete break!

D Kuwakado, Morii, “Security on the quantum-type Even-Mansour cipher”,
ISITA 2012
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Quantum adversary models

Q1 model: Q2 model:

@ Make classical queries to @ Do quantum computations

x = Ei(x) @ Queries E, in superposition

e Do quantum computations (e.g. standard oracle)
— realistic, less powerful. “Store = theoretical, strictly more
now, decrypt later”. powerful, but non trivial.
Only quadratic speedups at most Exponential speedups (total
so far? J breaks) become possible. J
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A long list of Q2 breaks

@ Even-Mansour cipher, self-similar key-alternating / Feistel ciphers
e CBC-MAC, OCB...[KLLN16]
o LightMAC(+), PolyMAC, GCM-SIV(2), Poly1305,
PMAC(+)...[BLNS21]
=> many good modes (encryption & MACs) get broken

PERIODIC FUNCTIONS

 PERIODIC FUNCTIONSEVERYWHERE

Ij Kaplan, Leurent, Leverrier, Naya-Plasencia, “Breaking Symmetric Cryptosystems
Using Quantum Period Finding”, CRYPTO 2016

B Bonnetain, Leurent, Naya-Plasencia, S., “Quantum Linearization Attacks”,
ASIACRYPT 2021
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A Q2 break on CBC-MAC

Super-quadratic Q1 Attacks
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Conclusion
[e]o]e}

From a block cipher Ex and two keys k, k’. Integrity & authenticity

protection.
my

my

my

o be

Ex

Ex

Y

Use the MAC with two blocks:

Ex

Ek/

—Tag

Fix m; to a pair of values {ap, a1 }:

NLAC/(’;(/(H'I;[7 mg) = Ek/ o Ek(mg D Ek(ml)) .

MACk,k/(ao,X) = MACkyk/ <CM1,X &, Ek(Oé()) ) Ek(al))
—_—

= f(x)

= g(x ® Ex(ao) ® Ex(a1))
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CBC-MAC (ctd.)

The boolean hidden shift problem is not harder than the hidden period
problem. Simply define:

_Jf(x)ifb=0
Fb,x) = {g(x) fb=1

then F has a hidden period 1||Ey (o) @ Ex(cv1).

= using Simon's algorithm, we can recover s = Ey(ag) @ Ex(ay) with
~ n queries. J

For any message that starts with ag: ap||m1||ma ... my, the message
ag||my @ s||my ... m; has the same tag.

— breaks authenticity as it allows the adversary to output new valid
{message, tag} pairs
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Wrapping up

o Despite these breaks, Q2-secure MAC / encryption remains possible
...and Ql-secure is fine as well

@ On primitives, only specific ones are broken (not AES)

Going back to the “realistic” Q1 setting, all algorithms / attacks had a
quadratic speedup at most. Is this a strong limitation?
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Grover meets Simon: the FX attack

FX = Even-Mansour with a cipher E, instead of the public P

kq ko

X 4%* Ek 4%—) ka17k27k(x)

Superposition attack on FX: “Grover-meet-Simon”

@ Search k with Grover's algorithm

@ To test a guess z, do the Even-Mansour attack
— attack fails: z #k
— attack succeeds: z = k

Conclusion
[e]o]e}

GMS problem: “among all the functions x — (FX & E,)(x), find the

single z which gives a periodic function”

D Leander, May, “Grover Meets Simon - Quantumly Attacking the FX-construction”,

ASIACRYPT 2017
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Running the FX attack

o If |k| = 2n, 22"/2 = 2" Grover iterates

@ n sup. queries and n3 computations at each iterate

0. Setup Grover's initial statez |z) 00.%0
z ODOOO

. Test current state %o0o
1. lteration 1 o
Apply Grover's diffusion transform %00

. Test current state o
2. lteration 2 R 000
Apply Grover's diffusion transform 000

. Test current state
3. lteration 3 C o
Apply Grover's diffusion transform o

32/44
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Running the FX attack (ctd.)

Make the queries ) |x)|F.(x) = (FX @ E,)(x))
Test iter. 1 ¢ Run Simon's algorithm

Unmake the queries

Make the queries ) |x)|F.(x) = (FX @ E,)(x))
Test iter. 2 < Run Simon's algorithm

Unmake the queries

Make the queries ) |x)|F.(x) = (FX @ E,)(x))
Test iter. 3 ¢ Run Simon's algorithm

Unmake the queries

09

E, varies between the iterates, but FX is

| ' 3K )
always the same! ‘ ’

33/44
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Improving the FX attack (ctd.)

Setup { Make the “offline query states” > |x) |FX(x))
Query E;: 3., [x) [(FX @ E,)(x))

Run Simon'’s algorithm
Unmake the query to E,: back to > _|x) |FX(x))

{Query E: 3, %) [(FX @ E,)(x))

Test iter. 1

Test iter. 2 ¢ Run Simon's algorithm

Unmake the query to E,
Query B2 >, [x) [(FX & E;)(x))

Test iter. 3 ¢ Run Simon's algorithm

Unmake the query to E,
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Offline-Simon attack on FX

k1 ko

X 4%* Ek 4%—) FXkl,kz7k(X)

In looking for the single z such that FX @ E, is periodic, we can make the
queries to FX only once, “offline”. J

If |k| = 2n:
@ creating the initial "query states” costs the codebook (2" queries)
and time ~ 2"
o the quantum search contains 22"/2 iterations: time ~ n32"

D Bonnetain, Hosoyamada, Naya-Plasencia, Sasaki, and S., "Quantum Attacks
Without Superposition Queries: The Offline Simon’s Algorithm”, ASIACRYPT 2019
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(Almost) a super-Grover speedup

Classical time:

2l % attacking EM
N——— ——
2n/2

Conclusion
[e]o]e}

Quantum time:

2/472 % attacking EM
—_———
3

Unfortunately, we also have a better classical attack on FX — speedup

remains quadratic.
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What if...

... there existed a way to strengthen the FX construction such that:
@ the classical security improves

@ the offline-Simon attack has the same complexity?
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Extended FX (a.k.a. 2-XOR-Cascade)

ky

—t

Ey

D— &

— EFXk,khkz (X)

Still assuming: |k| = 2n:

Any classical adversary must make 2

Conclusion
[e]o]e}

queries to E, E’ to distinguish. J

A quantum adversary can recover all the keys in time ~ n32".

D Gazi, Tessaro, “Efficient and optimally secure key-length extension for block

ciphers via randomized cascading”’, EUROCRYPT 2012
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Tweaking Offline-Simon

We are given the codebook of EFX[E, E']x 4, .k, for some keys.

EFX[E, E'x ky ke = Ep (ko ® Ei(ki @ X))

Previous Offline-Simon problem:
Find the unique z such that F, = f @ g, is periodic. J

— not applicable.

“True” Offline-Simon problem:
Find the unique z such that F, = 7, o f is periodic. J

— replaces the XOR by any permutation 7, that we can compute.
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Tweaking Offline-Simon (ctd.)

Setup { Make the “offline query states” >~ |x) |f(x))

Apply 7, in-place: Y~ |x) |7, o f(x))
Run Simon'’s algorithm

Apply 7,7t back to > |x)|f(x))

{Apply 7, in-place: Y~ |x) |7, o f(x))

Test iter. 1

Test iter. 2 ¢ Run Simon's algorithm

Apply 7,7t back to > |x)|f(x))

Apply 7, in-place: Y~ |x) |7, o f(x))
Run Simon'’s algorithm

Apply 7,7t back to > |x)|f(x))

Test iter. 3
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Tweaking Offline-Simon (ctd.)

EFX(E, Elsse = EL (k2 & Ec(k & x)) .
We have:

T(EFX(x)) = (E{()‘I(EFX(x)) ® Ex(x) =
ko ® Ex(ky © x) @ Ex(x) (periodic)

is periodic or random.
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Conclusion

So far in quantum symmetric cryptanalysis:
1. many attacks with quadratic (Grover-style) speedups
many Q2 breaks of constructions / modes of operation
super-quadratic speedups (up to 2.5) on specific cases

2.
3.
= improvement comes from the super-quadratic distinguisher (e.g.,
Even-Mansour)

What is the largest speedup? J
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Conclusion

There is no “largest” speedup for attacks in symmetric crypto.

Conclusion
ooe

[YZ22]: there exists a PRF construction that is:

@ provably secure in the Random Oracle model (i.e., without any
crypto “trapdoor”)

@ invertible in quantum polynomial time

Fortunately, good symmetric crypto primitives (e.g., AES) seem to
remain as good in the quantum setting.

Thank you!

D Yamakawa, Zhandry, “Verifiable Quantum Advantage without Structure”,
FOCS 2022
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Bonus: hash functions

A function h : {0,1}* — {0,1}" that “"behaves like a random function”.
@ Preimage search: 2" — 2"/2 (Grover)
o Collision search: 2"/2 — 2n/3 (*)

The subquadratic speedup of collision search is optimal (for a random
function). J

— if the attack has a typical quadratic speedup:

VT =23 0 T ~220/3 5 90/2

— this wouldn’t be a classical attack, but it can be a quantum one
[HS20]

(*) Depends on the memory available (model and quantity).

D Hosoyamada, Sasaki, “Finding Hash Collisions with Quantum Computers by Using
Differential Trails with Smaller Probability than Birthday Bound”, EUROCRYPT 2020
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